OPEN-SOURCE SCRIPT

Multiple Non-Linear Regression [ChartPrime]

This indicator is designed to perform multiple non-linear regression analysis using four independent variables: close, open, high, and low prices. Here's a breakdown of its components and functionalities:

Inputs:
Users can adjust several parameters:
  • Normalization Data Length: Length of data used for normalization.
  • Learning Rate: Rate at which the algorithm learns from errors.
  • Smooth?: Option to smooth the output.
  • Smooth Length: Length of smoothing if enabled.
  • Define start coefficients: Initial coefficients for the regression equation.


Data Normalization:
The script normalizes input data to a range between 0 and 1 using the highest and lowest values within a specified length.

Non-linear Regression:
It calculates the regression equation using the input coefficients and normalized data. The equation used is a weighted sum of the independent variables, with coefficients adjusted iteratively using gradient descent to minimize errors.

Error Calculation:
The script computes the error between the actual and predicted values.

Gradient Descent: The coefficients are updated iteratively using gradient descent to minimize the error.


Visualization:
  • Plotting of normalized input data (close, open, high, low).
    The indicator provides visualization of normalized data values (close, open, high, low) in the form of circular markers on the chart, allowing users to easily observe the relative positions of these values in relation to each other and the regression line.스냅샷
  • Plotting of the regression line.
  • Color gradient on the regression line based on its value and bar colors.
    스냅샷
  • Display of normalized input data and predicted value in a table.
    스냅샷
  • Signals for crossovers with a midline (0.5).


Interpretation:
Users can interpret the regression line and its crossovers with the midline (0.5) as signals for potential buy or sell opportunities.
스냅샷

This indicator helps users analyze the relationship between multiple variables and make trading decisions based on the regression analysis. Adjusting the coefficients and parameters can fine-tune the model's performance according to specific market conditions.
linearLinear RegressionlinregMoving Averagestrend

오픈 소스 스크립트

진정한 TradingView 정신에 따라, 이 스크립트의 저자는 트레이더들이 이해하고 검증할 수 있도록 오픈 소스로 공개했습니다. 저자에게 박수를 보냅니다! 이 코드는 무료로 사용할 수 있지만, 출판물에서 이 코드를 재사용하는 것은 하우스 룰에 의해 관리됩니다. 님은 즐겨찾기로 이 스크립트를 차트에서 쓸 수 있습니다.

차트에 이 스크립트를 사용하시겠습니까?


또한 다음에서도:

면책사항