OPEN-SOURCE SCRIPT
Polynomial Regression Channel [ChartPrime]

⯁ OVERVIEW
The Polynomial Regression Channel [ChartPrime] fits price action using advanced polynomial regression, extending beyond simple linear or logarithmic models. By leveraging matrix calculations, it builds a curved regression line that adapts to swings more naturally. The channel includes extrapolated forward projections, helping traders visualize where price may gravitate in the near future. Midline color shifts reflect directional bias, while prediction ranges are marked with dashed extensions, labeled prices, and a live table for clarity.
⯁ KEY FEATURES
⯁ USAGE
⯁ CONCLUSION
The Polynomial Regression Channel offers a mathematically advanced way to visualize price trends and anticipate future paths. With matrix-driven polynomial fitting, extrapolated projections, and integrated live labels, it combines statistical rigor with practical trading visuals — a robust upgrade over standard regression channels.
The Polynomial Regression Channel [ChartPrime] fits price action using advanced polynomial regression, extending beyond simple linear or logarithmic models. By leveraging matrix calculations, it builds a curved regression line that adapts to swings more naturally. The channel includes extrapolated forward projections, helping traders visualize where price may gravitate in the near future. Midline color shifts reflect directional bias, while prediction ranges are marked with dashed extensions, labeled prices, and a live table for clarity.
⯁ KEY FEATURES
- Polynomial Regression Core:
Uses matrix algebra to calculate a polynomial fit of customizable degree, adapting to complex, non-linear market structures.Pine Script® polyreg(source, length, degree, extrapolate) => total = length + extrapolate X_all = matrix.new<float>(total, degree + 1, 0.0) for i = 0 to total - 1 for j = 0 to degree matrix.set(X_all, i, j, math.pow(i, j)) // y (length × 1), oldest→newest over the fit window y = matrix.new<float>(length, 1, 0.0) for i = 0 to length - 1 matrix.set(y, i, 0, source[length - 1 - i]) // X_train (first `length` rows of X_all) X_tr = matrix.new<float>(length, degree + 1, 0.0) for i = 0 to length - 1 for j = 0 to degree matrix.set(X_tr, i, j, matrix.get(X_all, i, j)) // OLS via normal equations: (X'X)^(-1)b = X'y ⇒ b = (X'X)^(-1) X'y Xt = matrix.transpose(X_tr) // X' XtX = matrix.mult(Xt, X_tr) // (X'X) Xty = matrix.mult(Xt, y) // X'y XtX_inv = matrix.inv(XtX) // (X'X)^(-1) b = matrix.mult(XtX_inv, Xty) // b = (X'X)^(-1) X'y // Predictions for all rows (fit + extrap) preds = matrix.mult(X_all, matrix.col(b,0)) preds - Extrapolated Future Projections:
Forward-looking range (dashed lines + circular markers) shows where the fitted polynomial suggests price may move. - Dynamic Midline Coloring:
Regression midline shifts green when slope turns upward and magenta when slope turns downward, giving instant directional context. - Channel Boundaries:
Upper and lower levels expand from the midline using a volatility-based offset, framing potential overbought and oversold conditions. - Top-Right Data Table:
A live table displays Upper, Middle, and Lower Prediction values, updating in real time for quick reference without scanning the chart.
⯁ USAGE
- Use the regression midline to gauge underlying market bias; green slopes suggest continuation, magenta slopes caution for weakness.
- Watch dashed extrapolated ranges as potential targets or reaction zones during upcoming sessions.
- Price labels and table values act as precise reference levels for planning entries, exits, or stop placement.
- Increase Degree for more curve-fitting on choppy markets, or keep it low for broader trend approximation.
- Adjust Period and Extrapolate length to balance stability vs. responsiveness.
⯁ CONCLUSION
The Polynomial Regression Channel offers a mathematically advanced way to visualize price trends and anticipate future paths. With matrix-driven polynomial fitting, extrapolated projections, and integrated live labels, it combines statistical rigor with practical trading visuals — a robust upgrade over standard regression channels.
오픈 소스 스크립트
트레이딩뷰의 진정한 정신에 따라, 이 스크립트의 작성자는 이를 오픈소스로 공개하여 트레이더들이 기능을 검토하고 검증할 수 있도록 했습니다. 작성자에게 찬사를 보냅니다! 이 코드는 무료로 사용할 수 있지만, 코드를 재게시하는 경우 하우스 룰이 적용된다는 점을 기억하세요.
면책사항
해당 정보와 게시물은 금융, 투자, 트레이딩 또는 기타 유형의 조언이나 권장 사항으로 간주되지 않으며, 트레이딩뷰에서 제공하거나 보증하는 것이 아닙니다. 자세한 내용은 이용 약관을 참조하세요.
오픈 소스 스크립트
트레이딩뷰의 진정한 정신에 따라, 이 스크립트의 작성자는 이를 오픈소스로 공개하여 트레이더들이 기능을 검토하고 검증할 수 있도록 했습니다. 작성자에게 찬사를 보냅니다! 이 코드는 무료로 사용할 수 있지만, 코드를 재게시하는 경우 하우스 룰이 적용된다는 점을 기억하세요.
면책사항
해당 정보와 게시물은 금융, 투자, 트레이딩 또는 기타 유형의 조언이나 권장 사항으로 간주되지 않으며, 트레이딩뷰에서 제공하거나 보증하는 것이 아닙니다. 자세한 내용은 이용 약관을 참조하세요.