에디터즈 픽OPEN-SOURCE SCRIPT

Machine Learning Adaptive SuperTrend [AlgoAlpha]

업데이트됨
📈🤖 Machine Learning Adaptive SuperTrend [AlgoAlpha] - Take Your Trading to the Next Level! 🚀✨

Introducing the Machine Learning Adaptive SuperTrend, an advanced trading indicator designed to adapt to market volatility dynamically using machine learning techniques. This indicator employs k-means clustering to categorize market volatility into high, medium, and low levels, enhancing the traditional SuperTrend strategy. Perfect for traders who want an edge in identifying trend shifts and market conditions.

What is K-Means Clustering and How It Works
K-means clustering is a machine learning algorithm that partitions data into distinct groups based on similarity. In this indicator, the algorithm analyzes ATR (Average True Range) values to classify volatility into three clusters: high, medium, and low. The algorithm iterates to optimize the centroids of these clusters, ensuring accurate volatility classification.

Key Features
  • 🎨 Customizable Appearance: Adjust colors for bullish and bearish trends.
  • 🔧 Flexible Settings: Configure ATR length, SuperTrend factor, and initial volatility guesses.
  • 📊 Volatility Classification: Uses k-means clustering to adapt to market conditions.
  • 📈 Dynamic SuperTrend Calculation: Applies the classified volatility level to the SuperTrend calculation.
  • 🔔 Alerts: Set alerts for trend shifts and volatility changes.
  • 📋 Data Table Display: View cluster details and current volatility on the chart.


Quick Guide to Using the Machine Learning Adaptive SuperTrend Indicator

🛠 Add the Indicator: Add the indicator to favorites by pressing the star icon. Customize settings like ATR length, SuperTrend factor, and volatility percentiles to fit your trading style.
스냅샷

📊 Market Analysis: Observe the color changes and SuperTrend line for trend reversals. Use the data table to monitor volatility clusters.
스냅샷

🔔 Alerts: Enable notifications for trend shifts and volatility changes to seize trading opportunities without constant chart monitoring.
스냅샷

How It Works
The indicator begins by calculating the ATR values over a specified training period to assess market volatility. Initial guesses for high, medium, and low volatility percentiles are inputted. The k-means clustering algorithm then iterates to classify the ATR values into three clusters. This classification helps in determining the appropriate volatility level to apply to the SuperTrend calculation. As the market evolves, the indicator dynamically adjusts, providing real-time trend and volatility insights. The indicator also incorporates a data table displaying cluster centroids, sizes, and the current volatility level, aiding traders in making informed decisions.

Add the Machine Learning Adaptive SuperTrend to your TradingView charts today and experience a smarter way to trade! 🌟📊
릴리즈 노트
Fixed an error in the data table
릴리즈 노트
Modified alerts to fire only after bar close.
릴리즈 노트
Implemented optimisations to make the script more efficient. Credits to PineCoders for the suggestions.
릴리즈 노트
Added the ability to customize the trailing fill's transparency.
algoalphaartificial_intelligenceBands and ChannelskmeansmachinelearningmeanreversionsupertrendTrend AnalysistrendfollowingVolatilityvolatilityindicator

오픈 소스 스크립트

진정한 TradingView 정신에 따라, 이 스크립트의 저자는 트레이더들이 이해하고 검증할 수 있도록 오픈 소스로 공개했습니다. 저자에게 박수를 보냅니다! 이 코드는 무료로 사용할 수 있지만, 출판물에서 이 코드를 재사용하는 것은 하우스 룰에 의해 관리됩니다. 님은 즐겨찾기로 이 스크립트를 차트에서 쓸 수 있습니다.

차트에 이 스크립트를 사용하시겠습니까?


🔶15% OFF CODE FOR VIP BUNDLE: 'ALPH4' 🔶(ends soon)

🚨Get premium: algoalpha.io

🛜Get FREE signals: discord.gg/xCmqTVRexz

❓Do you have feedback or indicator ideas? Join our server to tell us about it!
또한 다음에서도:

면책사항