PINE LIBRARY
업데이트됨 machine_learning

Library "machine_learning"
euclidean(a, b)
Parameters:
a (array<float>)
b (array<float>)
manhattan(a, b)
Parameters:
a (array<float>)
b (array<float>)
cosine_similarity(a, b)
Parameters:
a (array<float>)
b (array<float>)
cosine_distance(a, b)
Parameters:
a (array<float>)
b (array<float>)
chebyshev(a, b)
Parameters:
a (array<float>)
b (array<float>)
minkowski(a, b, p)
Parameters:
a (array<float>)
b (array<float>)
p (float)
dot_product(a, b)
Parameters:
a (array<float>)
b (array<float>)
vector_norm(arr, p)
Parameters:
arr (array<float>)
p (float)
sigmoid(x)
Parameters:
x (float)
sigmoid_derivative(x)
Parameters:
x (float)
tanh_derivative(x)
Parameters:
x (float)
relu(x)
Parameters:
x (float)
relu_derivative(x)
Parameters:
x (float)
leaky_relu(x, alpha)
Parameters:
x (float)
alpha (float)
leaky_relu_derivative(x, alpha)
Parameters:
x (float)
alpha (float)
elu(x, alpha)
Parameters:
x (float)
alpha (float)
gelu(x)
Parameters:
x (float)
swish(x, beta)
Parameters:
x (float)
beta (float)
softmax(arr)
Parameters:
arr (array<float>)
apply_activation(arr, activation_type, alpha)
Parameters:
arr (array<float>)
activation_type (string)
alpha (float)
normalize_minmax(arr, min_val, max_val)
Parameters:
arr (array<float>)
min_val (float)
max_val (float)
normalize_zscore(arr, mean_val, std_val)
Parameters:
arr (array<float>)
mean_val (float)
std_val (float)
normalize_matrix_cols(m)
Parameters:
m (matrix<float>)
scaler_fit(arr, method)
Parameters:
arr (array<float>)
method (string)
scaler_fit_matrix(m, method)
Parameters:
m (matrix<float>)
method (string)
scaler_transform(scaler, arr)
Parameters:
scaler (ml_scaler)
arr (array<float>)
scaler_transform_matrix(scaler, m)
Parameters:
scaler (ml_scaler)
m (matrix<float>)
clip(x, lo, hi)
Parameters:
x (float)
lo (float)
hi (float)
clip_array(arr, lo, hi)
Parameters:
arr (array<float>)
lo (float)
hi (float)
loss_mse(predicted, actual)
Parameters:
predicted (array<float>)
actual (array<float>)
loss_rmse(predicted, actual)
Parameters:
predicted (array<float>)
actual (array<float>)
loss_mae(predicted, actual)
Parameters:
predicted (array<float>)
actual (array<float>)
loss_binary_crossentropy(predicted, actual)
Parameters:
predicted (array<float>)
actual (array<float>)
loss_huber(predicted, actual, delta)
Parameters:
predicted (array<float>)
actual (array<float>)
delta (float)
gradient_step(weights, gradients, lr)
Parameters:
weights (array<float>)
gradients (array<float>)
lr (float)
adam_step(weights, gradients, m, v, lr, beta1, beta2, t, epsilon)
Parameters:
weights (array<float>)
gradients (array<float>)
m (array<float>)
v (array<float>)
lr (float)
beta1 (float)
beta2 (float)
t (int)
epsilon (float)
clip_gradients(gradients, max_norm)
Parameters:
gradients (array<float>)
max_norm (float)
lr_decay(initial_lr, decay_rate, step)
Parameters:
initial_lr (float)
decay_rate (float)
step (int)
lr_cosine_annealing(initial_lr, min_lr, step, total_steps)
Parameters:
initial_lr (float)
min_lr (float)
step (int)
total_steps (int)
knn_create(k, distance_type)
Parameters:
k (int)
distance_type (string)
knn_fit(model, X, y)
Parameters:
model (ml_knn)
X (matrix<float>)
y (array<int>)
knn_predict(model, x)
Parameters:
model (ml_knn)
x (array<float>)
knn_predict_proba(model, x)
Parameters:
model (ml_knn)
x (array<float>)
knn_batch_predict(model, X)
Parameters:
model (ml_knn)
X (matrix<float>)
linreg_fit(X, y)
Parameters:
X (matrix<float>)
y (array<float>)
ridge_fit(X, y, lambda)
Parameters:
X (matrix<float>)
y (array<float>)
lambda (float)
linreg_predict(model, x)
Parameters:
model (ml_linreg)
x (array<float>)
linreg_predict_batch(model, X)
Parameters:
model (ml_linreg)
X (matrix<float>)
linreg_score(model, X, y)
Parameters:
model (ml_linreg)
X (matrix<float>)
y (array<float>)
logreg_create(n_features, learning_rate, iterations)
Parameters:
n_features (int)
learning_rate (float)
iterations (int)
logreg_fit(model, X, y)
Parameters:
model (ml_logreg)
X (matrix<float>)
y (array<int>)
logreg_predict_proba(model, x)
Parameters:
model (ml_logreg)
x (array<float>)
logreg_predict(model, x, threshold)
Parameters:
model (ml_logreg)
x (array<float>)
threshold (float)
logreg_batch_predict(model, X, threshold)
Parameters:
model (ml_logreg)
X (matrix<float>)
threshold (float)
nb_create(n_classes)
Parameters:
n_classes (int)
nb_fit(model, X, y)
Parameters:
model (ml_nb)
X (matrix<float>)
y (array<int>)
nb_predict_proba(model, x)
Parameters:
model (ml_nb)
x (array<float>)
nb_predict(model, x)
Parameters:
model (ml_nb)
x (array<float>)
nn_create(layers, activation)
Parameters:
layers (array<int>)
activation (string)
nn_forward(model, x)
Parameters:
model (ml_nn)
x (array<float>)
nn_predict_class(model, x)
Parameters:
model (ml_nn)
x (array<float>)
accuracy(y_true, y_pred)
Parameters:
y_true (array<int>)
y_pred (array<int>)
precision(y_true, y_pred, positive_class)
Parameters:
y_true (array<int>)
y_pred (array<int>)
positive_class (int)
recall(y_true, y_pred, positive_class)
Parameters:
y_true (array<int>)
y_pred (array<int>)
positive_class (int)
f1_score(y_true, y_pred, positive_class)
Parameters:
y_true (array<int>)
y_pred (array<int>)
positive_class (int)
r_squared(y_true, y_pred)
Parameters:
y_true (array<float>)
y_pred (array<float>)
mse(y_true, y_pred)
Parameters:
y_true (array<float>)
y_pred (array<float>)
rmse(y_true, y_pred)
Parameters:
y_true (array<float>)
y_pred (array<float>)
mae(y_true, y_pred)
Parameters:
y_true (array<float>)
y_pred (array<float>)
confusion_matrix(y_true, y_pred, n_classes)
Parameters:
y_true (array<int>)
y_pred (array<int>)
n_classes (int)
sliding_window(data, window_size)
Parameters:
data (array<float>)
window_size (int)
train_test_split(X, y, test_ratio)
Parameters:
X (matrix<float>)
y (array<int>)
test_ratio (float)
create_binary_labels(data, threshold)
Parameters:
data (array<float>)
threshold (float)
lag_matrix(data, n_lags)
Parameters:
data (array<float>)
n_lags (int)
signal_to_position(prediction, threshold_long, threshold_short)
Parameters:
prediction (float)
threshold_long (float)
threshold_short (float)
confidence_sizing(probability, max_size, min_confidence)
Parameters:
probability (float)
max_size (float)
min_confidence (float)
kelly_sizing(win_rate, avg_win, avg_loss, max_fraction)
Parameters:
win_rate (float)
avg_win (float)
avg_loss (float)
max_fraction (float)
sharpe_ratio(returns, risk_free_rate)
Parameters:
returns (array<float>)
risk_free_rate (float)
sortino_ratio(returns, risk_free_rate)
Parameters:
returns (array<float>)
risk_free_rate (float)
max_drawdown(equity)
Parameters:
equity (array<float>)
atr_stop_loss(entry_price, atr, multiplier, is_long)
Parameters:
entry_price (float)
atr (float)
multiplier (float)
is_long (bool)
risk_reward_take_profit(entry_price, stop_loss, ratio)
Parameters:
entry_price (float)
stop_loss (float)
ratio (float)
ensemble_vote(predictions)
Parameters:
predictions (array<int>)
ensemble_weighted_average(predictions, weights)
Parameters:
predictions (array<float>)
weights (array<float>)
smooth_prediction(current, previous, alpha)
Parameters:
current (float)
previous (float)
alpha (float)
regime_classifier(volatility, trend_strength, vol_threshold, trend_threshold)
Parameters:
volatility (float)
trend_strength (float)
vol_threshold (float)
trend_threshold (float)
ml_knn
Fields:
k (series int)
distance_type (series string)
X_train (matrix<float>)
y_train (array<int>)
ml_linreg
Fields:
coefficients (array<float>)
intercept (series float)
lambda (series float)
ml_logreg
Fields:
weights (array<float>)
bias (series float)
learning_rate (series float)
iterations (series int)
ml_nn
Fields:
layers (array<int>)
weights (matrix<float>)
biases (array<float>)
weight_offsets (array<int>)
bias_offsets (array<int>)
activation (series string)
ml_nb
Fields:
class_priors (array<float>)
means (matrix<float>)
variances (matrix<float>)
n_classes (series int)
ml_scaler
Fields:
min_vals (array<float>)
max_vals (array<float>)
means (array<float>)
stds (array<float>)
method (series string)
ml_train_result
Fields:
loss_history (array<float>)
final_loss (series float)
converged (series bool)
iterations_run (series int)
ml_prediction
Fields:
class_label (series int)
probability (series float)
probabilities (array<float>)
value (series float)
euclidean(a, b)
Parameters:
a (array<float>)
b (array<float>)
manhattan(a, b)
Parameters:
a (array<float>)
b (array<float>)
cosine_similarity(a, b)
Parameters:
a (array<float>)
b (array<float>)
cosine_distance(a, b)
Parameters:
a (array<float>)
b (array<float>)
chebyshev(a, b)
Parameters:
a (array<float>)
b (array<float>)
minkowski(a, b, p)
Parameters:
a (array<float>)
b (array<float>)
p (float)
dot_product(a, b)
Parameters:
a (array<float>)
b (array<float>)
vector_norm(arr, p)
Parameters:
arr (array<float>)
p (float)
sigmoid(x)
Parameters:
x (float)
sigmoid_derivative(x)
Parameters:
x (float)
tanh_derivative(x)
Parameters:
x (float)
relu(x)
Parameters:
x (float)
relu_derivative(x)
Parameters:
x (float)
leaky_relu(x, alpha)
Parameters:
x (float)
alpha (float)
leaky_relu_derivative(x, alpha)
Parameters:
x (float)
alpha (float)
elu(x, alpha)
Parameters:
x (float)
alpha (float)
gelu(x)
Parameters:
x (float)
swish(x, beta)
Parameters:
x (float)
beta (float)
softmax(arr)
Parameters:
arr (array<float>)
apply_activation(arr, activation_type, alpha)
Parameters:
arr (array<float>)
activation_type (string)
alpha (float)
normalize_minmax(arr, min_val, max_val)
Parameters:
arr (array<float>)
min_val (float)
max_val (float)
normalize_zscore(arr, mean_val, std_val)
Parameters:
arr (array<float>)
mean_val (float)
std_val (float)
normalize_matrix_cols(m)
Parameters:
m (matrix<float>)
scaler_fit(arr, method)
Parameters:
arr (array<float>)
method (string)
scaler_fit_matrix(m, method)
Parameters:
m (matrix<float>)
method (string)
scaler_transform(scaler, arr)
Parameters:
scaler (ml_scaler)
arr (array<float>)
scaler_transform_matrix(scaler, m)
Parameters:
scaler (ml_scaler)
m (matrix<float>)
clip(x, lo, hi)
Parameters:
x (float)
lo (float)
hi (float)
clip_array(arr, lo, hi)
Parameters:
arr (array<float>)
lo (float)
hi (float)
loss_mse(predicted, actual)
Parameters:
predicted (array<float>)
actual (array<float>)
loss_rmse(predicted, actual)
Parameters:
predicted (array<float>)
actual (array<float>)
loss_mae(predicted, actual)
Parameters:
predicted (array<float>)
actual (array<float>)
loss_binary_crossentropy(predicted, actual)
Parameters:
predicted (array<float>)
actual (array<float>)
loss_huber(predicted, actual, delta)
Parameters:
predicted (array<float>)
actual (array<float>)
delta (float)
gradient_step(weights, gradients, lr)
Parameters:
weights (array<float>)
gradients (array<float>)
lr (float)
adam_step(weights, gradients, m, v, lr, beta1, beta2, t, epsilon)
Parameters:
weights (array<float>)
gradients (array<float>)
m (array<float>)
v (array<float>)
lr (float)
beta1 (float)
beta2 (float)
t (int)
epsilon (float)
clip_gradients(gradients, max_norm)
Parameters:
gradients (array<float>)
max_norm (float)
lr_decay(initial_lr, decay_rate, step)
Parameters:
initial_lr (float)
decay_rate (float)
step (int)
lr_cosine_annealing(initial_lr, min_lr, step, total_steps)
Parameters:
initial_lr (float)
min_lr (float)
step (int)
total_steps (int)
knn_create(k, distance_type)
Parameters:
k (int)
distance_type (string)
knn_fit(model, X, y)
Parameters:
model (ml_knn)
X (matrix<float>)
y (array<int>)
knn_predict(model, x)
Parameters:
model (ml_knn)
x (array<float>)
knn_predict_proba(model, x)
Parameters:
model (ml_knn)
x (array<float>)
knn_batch_predict(model, X)
Parameters:
model (ml_knn)
X (matrix<float>)
linreg_fit(X, y)
Parameters:
X (matrix<float>)
y (array<float>)
ridge_fit(X, y, lambda)
Parameters:
X (matrix<float>)
y (array<float>)
lambda (float)
linreg_predict(model, x)
Parameters:
model (ml_linreg)
x (array<float>)
linreg_predict_batch(model, X)
Parameters:
model (ml_linreg)
X (matrix<float>)
linreg_score(model, X, y)
Parameters:
model (ml_linreg)
X (matrix<float>)
y (array<float>)
logreg_create(n_features, learning_rate, iterations)
Parameters:
n_features (int)
learning_rate (float)
iterations (int)
logreg_fit(model, X, y)
Parameters:
model (ml_logreg)
X (matrix<float>)
y (array<int>)
logreg_predict_proba(model, x)
Parameters:
model (ml_logreg)
x (array<float>)
logreg_predict(model, x, threshold)
Parameters:
model (ml_logreg)
x (array<float>)
threshold (float)
logreg_batch_predict(model, X, threshold)
Parameters:
model (ml_logreg)
X (matrix<float>)
threshold (float)
nb_create(n_classes)
Parameters:
n_classes (int)
nb_fit(model, X, y)
Parameters:
model (ml_nb)
X (matrix<float>)
y (array<int>)
nb_predict_proba(model, x)
Parameters:
model (ml_nb)
x (array<float>)
nb_predict(model, x)
Parameters:
model (ml_nb)
x (array<float>)
nn_create(layers, activation)
Parameters:
layers (array<int>)
activation (string)
nn_forward(model, x)
Parameters:
model (ml_nn)
x (array<float>)
nn_predict_class(model, x)
Parameters:
model (ml_nn)
x (array<float>)
accuracy(y_true, y_pred)
Parameters:
y_true (array<int>)
y_pred (array<int>)
precision(y_true, y_pred, positive_class)
Parameters:
y_true (array<int>)
y_pred (array<int>)
positive_class (int)
recall(y_true, y_pred, positive_class)
Parameters:
y_true (array<int>)
y_pred (array<int>)
positive_class (int)
f1_score(y_true, y_pred, positive_class)
Parameters:
y_true (array<int>)
y_pred (array<int>)
positive_class (int)
r_squared(y_true, y_pred)
Parameters:
y_true (array<float>)
y_pred (array<float>)
mse(y_true, y_pred)
Parameters:
y_true (array<float>)
y_pred (array<float>)
rmse(y_true, y_pred)
Parameters:
y_true (array<float>)
y_pred (array<float>)
mae(y_true, y_pred)
Parameters:
y_true (array<float>)
y_pred (array<float>)
confusion_matrix(y_true, y_pred, n_classes)
Parameters:
y_true (array<int>)
y_pred (array<int>)
n_classes (int)
sliding_window(data, window_size)
Parameters:
data (array<float>)
window_size (int)
train_test_split(X, y, test_ratio)
Parameters:
X (matrix<float>)
y (array<int>)
test_ratio (float)
create_binary_labels(data, threshold)
Parameters:
data (array<float>)
threshold (float)
lag_matrix(data, n_lags)
Parameters:
data (array<float>)
n_lags (int)
signal_to_position(prediction, threshold_long, threshold_short)
Parameters:
prediction (float)
threshold_long (float)
threshold_short (float)
confidence_sizing(probability, max_size, min_confidence)
Parameters:
probability (float)
max_size (float)
min_confidence (float)
kelly_sizing(win_rate, avg_win, avg_loss, max_fraction)
Parameters:
win_rate (float)
avg_win (float)
avg_loss (float)
max_fraction (float)
sharpe_ratio(returns, risk_free_rate)
Parameters:
returns (array<float>)
risk_free_rate (float)
sortino_ratio(returns, risk_free_rate)
Parameters:
returns (array<float>)
risk_free_rate (float)
max_drawdown(equity)
Parameters:
equity (array<float>)
atr_stop_loss(entry_price, atr, multiplier, is_long)
Parameters:
entry_price (float)
atr (float)
multiplier (float)
is_long (bool)
risk_reward_take_profit(entry_price, stop_loss, ratio)
Parameters:
entry_price (float)
stop_loss (float)
ratio (float)
ensemble_vote(predictions)
Parameters:
predictions (array<int>)
ensemble_weighted_average(predictions, weights)
Parameters:
predictions (array<float>)
weights (array<float>)
smooth_prediction(current, previous, alpha)
Parameters:
current (float)
previous (float)
alpha (float)
regime_classifier(volatility, trend_strength, vol_threshold, trend_threshold)
Parameters:
volatility (float)
trend_strength (float)
vol_threshold (float)
trend_threshold (float)
ml_knn
Fields:
k (series int)
distance_type (series string)
X_train (matrix<float>)
y_train (array<int>)
ml_linreg
Fields:
coefficients (array<float>)
intercept (series float)
lambda (series float)
ml_logreg
Fields:
weights (array<float>)
bias (series float)
learning_rate (series float)
iterations (series int)
ml_nn
Fields:
layers (array<int>)
weights (matrix<float>)
biases (array<float>)
weight_offsets (array<int>)
bias_offsets (array<int>)
activation (series string)
ml_nb
Fields:
class_priors (array<float>)
means (matrix<float>)
variances (matrix<float>)
n_classes (series int)
ml_scaler
Fields:
min_vals (array<float>)
max_vals (array<float>)
means (array<float>)
stds (array<float>)
method (series string)
ml_train_result
Fields:
loss_history (array<float>)
final_loss (series float)
converged (series bool)
iterations_run (series int)
ml_prediction
Fields:
class_label (series int)
probability (series float)
probabilities (array<float>)
value (series float)
릴리즈 노트
Machine Learning Library for PineScript v6A comprehensive machine learning library providing classification, regression, neural networks, and trading utilities for TradingView's PineScript.
---
Constants
| Constant | Description |
|---------------------|--------------------------------------------------|
| EPSILON_TINY | Smallest epsilon (1e-15) for numerical stability |
| EPSILON_SMALL | Small epsilon (1e-10) for numerical stability |
| EPSILON_MEDIUM | Medium epsilon (1e-8) for numerical stability |
| LOG_2PI | Precomputed log(2*PI) for Gaussian calculations |
| MAX_ITERATIONS | Default max iterations for algorithms (100) |
| MAX_MATRIX_ELEMENTS | PineScript matrix element limit (100,000) |
---
User-Defined Types
| Type | Description |
|-----------------|---------------------------------------|
| ml_knn | K-Nearest Neighbors model |
| ml_linreg | Linear/Ridge regression model |
| ml_logreg | Logistic regression model |
| ml_nn | Multi-layer perceptron neural network |
| ml_nb | Gaussian Naive Bayes classifier |
| ml_scaler | Data scaler for normalization |
| ml_train_result | Training result with loss history |
| ml_prediction | Prediction result with probabilities |
---
Functions
Distance Functions
- euclidean(a, b) - Euclidean (L2) distance
- manhattan(a, b) - Manhattan (L1) distance
- cosine_similarity(a, b) - Cosine similarity (-1 to 1)
- cosine_distance(a, b) - Cosine distance (0 to 2)
- chebyshev(a, b) - Chebyshev (L-infinity) distance
- minkowski(a, b, p) - Minkowski distance of order p
- dot_product(a, b) - Dot product of two vectors
- vector_norm(arr, p) - P-norm of a vector
Activation Functions
- sigmoid(x) - Sigmoid activation (0 to 1)
- sigmoid_derivative(x) - Derivative of sigmoid
- tanh_derivative(x) - Derivative of tanh
- relu(x) - ReLU activation
- relu_derivative(x) - Derivative of ReLU
- leaky_relu(x, alpha) - Leaky ReLU activation
- leaky_relu_derivative(x, alpha) - Derivative of Leaky ReLU
- elu(x, alpha) - ELU activation
- gelu(x) - GELU activation
- swish(x, beta) - Swish activation
- softmax(arr) - Softmax for probability distribution
- apply_activation(arr, type, alpha) - Apply activation to array
Preprocessing / Scaling
- normalize_minmax(arr, min, max) - Min-max normalization [0,1]
- normalize_zscore(arr, mean, std) - Z-score standardization
- normalize_matrix_cols(m) - Standardize matrix columns
- scaler_fit(arr, method) - Fit scaler to array
- scaler_fit_matrix(m, method) - Fit scaler to matrix
- scaler_transform(scaler, arr) - Transform array with scaler
- scaler_transform_matrix(scaler, m) - Transform matrix with scaler
- clip(x, lo, hi) - Clip value to range
- clip_array(arr, lo, hi) - Clip array values
Loss Functions
- loss_mse(predicted, actual) - Mean Squared Error
- loss_rmse(predicted, actual) - Root Mean Squared Error
- loss_mae(predicted, actual) - Mean Absolute Error
- loss_binary_crossentropy(predicted, actual) - Binary Cross-Entropy
- loss_huber(predicted, actual, delta) - Huber loss
Optimization
- gradient_step(weights, gradients, lr) - SGD step
- adam_step(weights, gradients, m, v, lr, ...) - Adam optimizer step
- clip_gradients(gradients, max_norm) - Gradient clipping
- lr_decay(initial_lr, decay_rate, step) - Learning rate decay
- lr_cosine_annealing(initial_lr, min_lr, step, total) - Cosine annealing
K-Nearest Neighbors
- knn_create(k, distance_type) - Create KNN model
- knn_fit(model, X, y) - Fit KNN with training data
- knn_predict(model, x) - Predict single sample
- knn_predict_proba(model, x) - Predict class probabilities
- knn_batch_predict(model, X) - Predict multiple samples
Linear Regression
- linreg_fit(X, y) - Fit OLS linear regression
- ridge_fit(X, y, lambda) - Fit Ridge regression
- linreg_predict(model, x) - Predict single value
- linreg_predict_batch(model, X) - Predict multiple values
- linreg_score(model, X, y) - Calculate R-squared
Logistic Regression
- logreg_create(n_features, lr, iterations) - Create model
- logreg_fit(model, X, y) - Fit with gradient descent
- logreg_predict_proba(model, x) - Predict probability
- logreg_predict(model, x, threshold) - Predict class
- logreg_batch_predict(model, X, threshold) - Batch prediction
Naive Bayes
- nb_create(n_classes) - Create Gaussian Naive Bayes
- nb_fit(model, X, y) - Fit model
- nb_predict_proba(model, x) - Predict class probabilities
- nb_predict(model, x) - Predict class label
Neural Network
- nn_create(layers, activation) - Create MLP network
- nn_forward(model, x) - Forward propagation
- nn_predict_class(model, x) - Predict class label
Metrics
- accuracy(y_true, y_pred) - Classification accuracy
- precision(y_true, y_pred, positive_class) - Precision score
- recall(y_true, y_pred, positive_class) - Recall score
- f1_score(y_true, y_pred, positive_class) - F1 score
- r_squared(y_true, y_pred) - R-squared for regression
- mse(y_true, y_pred) - Mean Squared Error
- rmse(y_true, y_pred) - Root Mean Squared Error
- mae(y_true, y_pred) - Mean Absolute Error
- confusion_matrix(y_true, y_pred, n_classes) - Confusion matrix
Data Utilities
- sliding_window(data, window_size) - Create sliding window matrix
- train_test_split(X, y, test_ratio) - Split into train/test sets
- create_binary_labels(data, threshold) - Create binary labels
- lag_matrix(data, n_lags) - Create lag features
Trading Utilities
- signal_to_position(prediction, long_thresh, short_thresh) - Convert to position signal
- confidence_sizing(probability, max_size, min_confidence) - Size by confidence
- kelly_sizing(win_rate, avg_win, avg_loss, max_fraction) - Kelly Criterion sizing
- sharpe_ratio(returns, risk_free_rate) - Annualized Sharpe ratio
- sortino_ratio(returns, risk_free_rate) - Annualized Sortino ratio
- max_drawdown(equity) - Maximum drawdown
- atr_stop_loss(entry, atr, multiplier, is_long) - ATR-based stop loss
- risk_reward_take_profit(entry, stop_loss, ratio) - R:R take profit
- ensemble_vote(predictions) - Majority voting
- ensemble_weighted_average(predictions, weights) - Weighted average
- smooth_prediction(current, previous, alpha) - EMA smoothing
- regime_classifier(volatility, trend_strength, ...) - Market regime classification
파인 라이브러리
트레이딩뷰의 진정한 정신에 따라, 작성자는 이 파인 코드를 오픈소스 라이브러리로 게시하여 커뮤니티의 다른 파인 프로그래머들이 재사용할 수 있도록 했습니다. 작성자에게 경의를 표합니다! 이 라이브러리는 개인적으로 사용하거나 다른 오픈소스 게시물에서 사용할 수 있지만, 이 코드의 게시물 내 재사용은 하우스 룰에 따라 규제됩니다.
면책사항
해당 정보와 게시물은 금융, 투자, 트레이딩 또는 기타 유형의 조언이나 권장 사항으로 간주되지 않으며, 트레이딩뷰에서 제공하거나 보증하는 것이 아닙니다. 자세한 내용은 이용 약관을 참조하세요.
파인 라이브러리
트레이딩뷰의 진정한 정신에 따라, 작성자는 이 파인 코드를 오픈소스 라이브러리로 게시하여 커뮤니티의 다른 파인 프로그래머들이 재사용할 수 있도록 했습니다. 작성자에게 경의를 표합니다! 이 라이브러리는 개인적으로 사용하거나 다른 오픈소스 게시물에서 사용할 수 있지만, 이 코드의 게시물 내 재사용은 하우스 룰에 따라 규제됩니다.
면책사항
해당 정보와 게시물은 금융, 투자, 트레이딩 또는 기타 유형의 조언이나 권장 사항으로 간주되지 않으며, 트레이딩뷰에서 제공하거나 보증하는 것이 아닙니다. 자세한 내용은 이용 약관을 참조하세요.