INVITE-ONLY SCRIPT

Profitable MAMA & FAMA Crossover

업데이트됨
Introduction
The MESA Adaptive Moving Average (MAMA) was originally presented by John F. Ehlers. By design, it is a special kind of Exponential Moving Average with self-adjusting alpha. Its adaptation is based on the rate change of phase as measured by the Homodyne Discriminator and the alpha parameter is allowed to range between a maximum and minimum value (Fast Limit and Slow Limit).

Key Point: Ehlers suggested the maximum value to be 0.5 and the minimum to be 0.05.
The variable alpha is computed as the Fast Limit divided by the phase rate of change. If the phase rate of change is large, the variable alpha is bounded at the SlowLimit. Then, this alpha is used to compute MAMA and FAMA (Following Adaptive Moving Average).

Should we rely on Ehlers' suggestions if we want to achieve the best result with MAMA & FAMA crossover system?
Well, he is a good specialist and widely recognized author, I respect him, but the answer is no and you can see results on the chart.

What is our goal?
We want to find the best configuration for MAMA & FAMA Crossover. To achieve that we need to analyze the MAMA's alpha parameter or, more specific, the bounds for this parameter, Fast and Slow Limits.

What is this tool?
This tool is a performance optimizer that uses decision tree-based algorithm under the hood to find the most profitable settings for the MAMA & FAMA Crossover. It analyzes a bunch of different Fast Limits (between 0.01 to 0.8 with step of 0.1) and Slow Limits (between 0.01 to 0.6 with step of 0.1) and backtests each combination across the entire history of an instrument. If the more profitable parameters were found, the indicator will switch its values to the found ones immediately.

So, instead of manually selecting and testing parameters just apply this indicator to your chart and
relax - the algorithm will find the best parameters for you


Alerts
It has a special alert that notifies when the more profitable settings were detected.

NOTE: It does not change what has already been plotted.
NOTE 2: This is not a strategy, but an algorithmic optimizer.

Reference: https://www.mesasoftware.com/papers/MAMA.pdf

MAMA & FAMA Crossover can be found here:
Ehlers MESA Adaptive Moving Averages (MAMA & FAMA)
릴리즈 노트
  • Update
릴리즈 노트
  • Update
algorithmalgorithmicautomatedehlersExponential Moving Average (EMA)famaMESA Adaptive Moving Average (MAMA)Moving AveragesoptimaloptimizerprofitableTrend Analysis

초대 전용 스크립트

이 스크립트에 대한 접근은 작성자가 승인한 사용자로 제한되며, 일반적으로 지불이 필요합니다. 즐겨찾기에 추가할 수 있지만 권한을 요청하고 작성자에게 권한을 받은 후에만 사용할 수 있습니다. 자세한 내용은 everget에게 문의하거나 아래의 작성자의 지시사항을 따르십시오.

트레이딩뷰는 스크립트 작성자를 100% 신뢰하고 스크립트 작동 원리를 이해하지 않는 한 스크립트 비용을 지불하고 사용하는 것을 권장하지 않습니다. 대부분의 경우 커뮤니티 스크립트에서 무료로 좋은 오픈소스 대안을 찾을 수 있습니다.

작성자 지시 사항

차트에 이 스크립트를 사용하시겠습니까?

경고: 액세스를 요청하기 전에 읽어 보시기 바랍니다.

Freelance -> Telegram: @alex_everget

A list of FREE indicators:
bit.ly/2S7EPuN

A list of PAID indicators:
bit.ly/33MA81f

Earn $15:
tradingview.com/pricing/?share_your_love=everget
또한 다음에서도:

면책사항