INVITE-ONLY SCRIPT
업데이트됨 Machine Learning : Neural Network Prediction -EasyNeuro-

Machine Learning: Neural Network Prediction
— An indicator that learns and predicts price movements using a neural network —
Overview
The indicator “Machine Learning: Neural Network Prediction” uses price data from the chart and applies a three-layer Feedforward Neural Network (FNN) to estimate future price movements.
Key Features
Normally, training and inference with neural networks require advanced programming languages that support machine learning frameworks (such as TensorFlow or PyTorch) as well as high-performance hardware with GPUs. However, this indicator independently implements the neural network mechanism within TradingView’s Pine Script environment, enabling real-time training and prediction directly on the chart.
Since Pine Script does not support matrix operations, the backpropagation algorithm—necessary for neural network training—has been implemented entirely through scalar operations. This unique approach makes the creation of such a groundbreaking indicator possible.
Significance of Neural Networks
Neural networks are a core machine learning method, forming the foundation of today’s widely used generative AI systems, such as OpenAI’s GPT and Google’s Gemini. The feedforward neural network adopted in this indicator is the most classical architecture among neural networks. One key advantage of neural networks is their ability to perform nonlinear predictions.
All conventional indicators—such as moving averages and oscillators like RSI—are essentially linear predictors. Linear prediction inherently lags behind past price fluctuations. In contrast, nonlinear prediction makes it theoretically possible to dynamically anticipate future price movements based on past patterns. This offers a significant benefit for using neural networks as prediction tools among the multitude of available indicators.
Moreover, neural networks excel at pattern recognition. Since technical analysis is largely based on recognizing market patterns, this makes neural networks a highly compatible approach.
Structure of the Indicator
This indicator is based on a three-layer feedforward neural network (FNN). Every time a new candlestick forms, the model samples random past data and performs online learning using stochastic gradient descent (SGD).
SGD is known as a more versatile learning method compared to standard gradient descent, particularly effective for uncertain datasets like financial market price data. Considering Pine Script’s computational constraints, SGD is a practical choice since it can learn effectively from small amounts of data. Because online learning is performed with each new candlestick, the indicator becomes a little “smarter” over time.
Adjustable Parameters
Learning Rate
Specifies how much the network’s parameters are updated per training step. Values between 0.0001 and 0.001 are recommended. Too high causes divergence and unstable predictions, while too low prevents sufficient learning.
Iterations per Online Learning Step
Specifies how many training iterations occur with each new candlestick. More iterations improve accuracy but may cause timeouts if excessive.
Seed
Random seed for initializing parameters. Changing the seed may alter performance.
Architecture Settings
Number of nodes in input and hidden layers:
Increasing input layer nodes allows predictions based on longer historical periods. Increasing hidden layer nodes increases the network’s interpretive capacity, enabling more flexible nonlinear predictions. However, more nodes increase computational cost exponentially, risking timeouts and overfitting.
Hidden layer activation function (ReLU / Sigmoid / Tanh):
Sigmoid:
Classical function, outputs between 0–1, approximates a normal distribution.
Tanh:
Similar to Sigmoid but outputs between -1 and 1, centered around 0, often more accurate.
ReLU:
Simple function (outputs input if ≥ 0, else 0), efficient and widely effective.
Input Features (selectable and combinable)
RoC (Rate of Change):
Measures relative price change over a period. Useful for predicting movement direction.
RSI (Relative Strength Index):
Oscillator showing how much price has risen/fallen within a period. Widely used to anticipate direction and momentum.
Stdev (Standard Deviation, volatility):
Measures price variability. Useful for volatility prediction, though not directional.
Optionally, input data can be smoothed to stabilize predictions.
Other Parameters
Data Sampling Window:
Period from which random samples are drawn for SGD.
Prediction Smoothing Period:
Smooths predictions to reduce spikes, especially when RoC is used.
Prediction MA Period:
Moving average applied to smoothed predictions.
Visualization Features
The internal state of the neural network is displayed in a table at the upper-right of the chart:
Network architecture:
Displays the structure of input, hidden, and output layers.
Node activations:
Shows how input, hidden, and output node values dynamically change with market conditions.
This design allows traders to intuitively understand the inner workings of the neural network, which is often treated as a black box.
Glossary of Terms
Feature:
Input variables fed to the model (RoC/RSI/Stdev).
Node/Unit:
Smallest computational element in a layer.
Activation Function:
Nonlinear function applied to node outputs (ReLU/Sigmoid/Tanh).
MSE (Mean Squared Error):
Loss function using average squared errors.
Gradient Descent (GD/SGD):
Optimization method that gradually adjusts weights in the direction that reduces loss.
Online Learning:
Training method where the model updates sequentially with each new data point.
— An indicator that learns and predicts price movements using a neural network —
Overview
The indicator “Machine Learning: Neural Network Prediction” uses price data from the chart and applies a three-layer Feedforward Neural Network (FNN) to estimate future price movements.
Key Features
Normally, training and inference with neural networks require advanced programming languages that support machine learning frameworks (such as TensorFlow or PyTorch) as well as high-performance hardware with GPUs. However, this indicator independently implements the neural network mechanism within TradingView’s Pine Script environment, enabling real-time training and prediction directly on the chart.
Since Pine Script does not support matrix operations, the backpropagation algorithm—necessary for neural network training—has been implemented entirely through scalar operations. This unique approach makes the creation of such a groundbreaking indicator possible.
Significance of Neural Networks
Neural networks are a core machine learning method, forming the foundation of today’s widely used generative AI systems, such as OpenAI’s GPT and Google’s Gemini. The feedforward neural network adopted in this indicator is the most classical architecture among neural networks. One key advantage of neural networks is their ability to perform nonlinear predictions.
All conventional indicators—such as moving averages and oscillators like RSI—are essentially linear predictors. Linear prediction inherently lags behind past price fluctuations. In contrast, nonlinear prediction makes it theoretically possible to dynamically anticipate future price movements based on past patterns. This offers a significant benefit for using neural networks as prediction tools among the multitude of available indicators.
Moreover, neural networks excel at pattern recognition. Since technical analysis is largely based on recognizing market patterns, this makes neural networks a highly compatible approach.
Structure of the Indicator
This indicator is based on a three-layer feedforward neural network (FNN). Every time a new candlestick forms, the model samples random past data and performs online learning using stochastic gradient descent (SGD).
SGD is known as a more versatile learning method compared to standard gradient descent, particularly effective for uncertain datasets like financial market price data. Considering Pine Script’s computational constraints, SGD is a practical choice since it can learn effectively from small amounts of data. Because online learning is performed with each new candlestick, the indicator becomes a little “smarter” over time.
Adjustable Parameters
Learning Rate
Specifies how much the network’s parameters are updated per training step. Values between 0.0001 and 0.001 are recommended. Too high causes divergence and unstable predictions, while too low prevents sufficient learning.
Iterations per Online Learning Step
Specifies how many training iterations occur with each new candlestick. More iterations improve accuracy but may cause timeouts if excessive.
Seed
Random seed for initializing parameters. Changing the seed may alter performance.
Architecture Settings
Number of nodes in input and hidden layers:
Increasing input layer nodes allows predictions based on longer historical periods. Increasing hidden layer nodes increases the network’s interpretive capacity, enabling more flexible nonlinear predictions. However, more nodes increase computational cost exponentially, risking timeouts and overfitting.
Hidden layer activation function (ReLU / Sigmoid / Tanh):
Sigmoid:
Classical function, outputs between 0–1, approximates a normal distribution.
Tanh:
Similar to Sigmoid but outputs between -1 and 1, centered around 0, often more accurate.
ReLU:
Simple function (outputs input if ≥ 0, else 0), efficient and widely effective.
Input Features (selectable and combinable)
RoC (Rate of Change):
Measures relative price change over a period. Useful for predicting movement direction.
RSI (Relative Strength Index):
Oscillator showing how much price has risen/fallen within a period. Widely used to anticipate direction and momentum.
Stdev (Standard Deviation, volatility):
Measures price variability. Useful for volatility prediction, though not directional.
Optionally, input data can be smoothed to stabilize predictions.
Other Parameters
Data Sampling Window:
Period from which random samples are drawn for SGD.
Prediction Smoothing Period:
Smooths predictions to reduce spikes, especially when RoC is used.
Prediction MA Period:
Moving average applied to smoothed predictions.
Visualization Features
The internal state of the neural network is displayed in a table at the upper-right of the chart:
Network architecture:
Displays the structure of input, hidden, and output layers.
Node activations:
Shows how input, hidden, and output node values dynamically change with market conditions.
This design allows traders to intuitively understand the inner workings of the neural network, which is often treated as a black box.
Glossary of Terms
Feature:
Input variables fed to the model (RoC/RSI/Stdev).
Node/Unit:
Smallest computational element in a layer.
Activation Function:
Nonlinear function applied to node outputs (ReLU/Sigmoid/Tanh).
MSE (Mean Squared Error):
Loss function using average squared errors.
Gradient Descent (GD/SGD):
Optimization method that gradually adjusts weights in the direction that reduces loss.
Online Learning:
Training method where the model updates sequentially with each new data point.
릴리즈 노트
Machine Learning: Neural Network Prediction— An indicator that learns and predicts price movements using a neural network —
Overview
The indicator “Machine Learning: Neural Network Prediction” uses price data from the chart and applies a three-layer Feedforward Neural Network (FNN) to estimate future price movements.
Key Features
Normally, training and inference with neural networks require advanced programming languages that support machine learning frameworks (such as TensorFlow or PyTorch) as well as high-performance hardware with GPUs. However, this indicator independently implements the neural network mechanism within TradingView’s Pine Script environment, enabling real-time training and prediction directly on the chart.
Since Pine Script does not support matrix operations, the backpropagation algorithm—necessary for neural network training—has been implemented entirely through scalar operations. This unique approach makes the creation of such a groundbreaking indicator possible.
Significance of Neural Networks
Neural networks are a core machine learning method, forming the foundation of today’s widely used generative AI systems, such as OpenAI’s GPT and Google’s Gemini. The feedforward neural network adopted in this indicator is the most classical architecture among neural networks. One key advantage of neural networks is their ability to perform nonlinear predictions.
All conventional indicators—such as moving averages and oscillators like RSI—are essentially linear predictors. Linear prediction inherently lags behind past price fluctuations. In contrast, nonlinear prediction makes it theoretically possible to dynamically anticipate future price movements based on past patterns. This offers a significant benefit for using neural networks as prediction tools among the multitude of available indicators.
Moreover, neural networks excel at pattern recognition. Since technical analysis is largely based on recognizing market patterns, this makes neural networks a highly compatible approach.
Structure of the Indicator
This indicator is based on a three-layer feedforward neural network (FNN). Every time a new candlestick forms, the model samples random past data and performs online learning using stochastic gradient descent (SGD).
A unique feature of this script is that it incorporates a loopback structure into part of the network, which significantly enhances its time-series prediction performance compared to a standard feedforward neural network, similar to that of an RNN.
SGD is known as a more versatile learning method compared to standard gradient descent, particularly effective for uncertain datasets like financial market price data. Considering Pine Script’s computational constraints, SGD is a practical choice since it can learn effectively from small amounts of data. Because online learning is performed with each new candlestick, the indicator becomes a little “smarter” over time.
Adjustable Parameters
Learning Rate
Specifies how much the network’s parameters are updated per training step. Values between 0.0001 and 0.001 are recommended. Too high causes divergence and unstable predictions, while too low prevents sufficient learning.
Iterations per Online Learning Step
Specifies how many training iterations occur with each new candlestick. More iterations improve accuracy but may cause timeouts if excessive.
Seed
Random seed for initializing parameters. Changing the seed may alter performance.
Architecture Settings
Number of nodes in input and hidden layers:
Increasing input layer nodes allows predictions based on longer historical periods. Increasing hidden layer nodes increases the network’s interpretive capacity, enabling more flexible nonlinear predictions. However, more nodes increase computational cost exponentially, risking timeouts and overfitting.
Hidden layer activation function (ReLU / Sigmoid / Tanh):
Sigmoid:
Classical function, outputs between 0–1, approximates a normal distribution.
Tanh:
Similar to Sigmoid but outputs between -1 and 1, centered around 0, often more accurate.
ReLU:
Simple function (outputs input if ≥ 0, else 0), efficient and widely effective.
Input Features (selectable and combinable)
RoC (Rate of Change):
Measures relative price change over a period. Useful for predicting movement direction.
RSI (Relative Strength Index):
Oscillator showing how much price has risen/fallen within a period. Widely used to anticipate direction and momentum.
Stdev (Standard Deviation, volatility):
Measures price variability. Useful for volatility prediction, though not directional.
Optionally, input data can be smoothed to stabilize predictions.
Other Parameters
Data Sampling Window:
Period from which random samples are drawn for SGD.
Prediction Smoothing Period:
Smooths predictions to reduce spikes, especially when RoC is used.
Prediction MA Period:
Moving average applied to smoothed predictions.
Visualization Features
The internal state of the neural network is displayed in a table at the upper-right of the chart:
Network architecture:
Displays the structure of input, hidden, and output layers.
Node activations:
Shows how input, hidden, and output node values dynamically change with market conditions.
This design allows traders to intuitively understand the inner workings of the neural network, which is often treated as a black box.
Glossary of Terms
Feature:
Input variables fed to the model (RoC/RSI/Stdev).
Node/Unit:
Smallest computational element in a layer.
Activation Function:
Nonlinear function applied to node outputs (ReLU/Sigmoid/Tanh).
MSE (Mean Squared Error):
Loss function using average squared errors.
Gradient Descent (GD/SGD):
Optimization method that gradually adjusts weights in the direction that reduces loss.
Online Learning:
Training method where the model updates sequentially with each new data point.
릴리즈 노트
To stabilize predictions with regular candlesticks, input smoothing has been enabled by default. Please turn it off when using Heikin-Ashi.릴리즈 노트
The default smoothing period for the input has been set to 3.릴리즈 노트
The default number of input nodes has been set to 3.릴리즈 노트
The output smoothing period has been set to 12.릴리즈 노트
Adjusting the default values.초대 전용 스크립트
이 스크립트는 작성자가 승인한 사용자만 접근할 수 있습니다. 사용하려면 요청을 보내고 승인을 받아야 합니다. 일반적으로 결제 후에 승인이 이루어집니다. 자세한 내용은 아래 작성자의 지침을 따르거나 EazyNeuro에게 직접 문의하세요.
트레이딩뷰는 스크립트 작성자를 완전히 신뢰하고 스크립트 작동 방식을 이해하지 않는 한 스크립트 비용을 지불하거나 사용하지 않는 것을 권장하지 않습니다. 무료 오픈소스 대체 스크립트는 커뮤니티 스크립트에서 찾을 수 있습니다.
작성자 지시 사항
Please purchase a paid membership on Patreon and submit the account linking form provided there. A 7-day free trial is available.
경고: 액세스를 요청하기 앞서 초대 전용 스크립트에 대한 가이드를 읽어주세요.
Premium Indicator: patreon.com/c/NEUROPULSE_TRADE
Discord: discord.gg/NZuBAnR3
Discord: discord.gg/NZuBAnR3
면책사항
이 정보와 게시물은 TradingView에서 제공하거나 보증하는 금융, 투자, 거래 또는 기타 유형의 조언이나 권고 사항을 의미하거나 구성하지 않습니다. 자세한 내용은 이용 약관을 참고하세요.
초대 전용 스크립트
이 스크립트는 작성자가 승인한 사용자만 접근할 수 있습니다. 사용하려면 요청을 보내고 승인을 받아야 합니다. 일반적으로 결제 후에 승인이 이루어집니다. 자세한 내용은 아래 작성자의 지침을 따르거나 EazyNeuro에게 직접 문의하세요.
트레이딩뷰는 스크립트 작성자를 완전히 신뢰하고 스크립트 작동 방식을 이해하지 않는 한 스크립트 비용을 지불하거나 사용하지 않는 것을 권장하지 않습니다. 무료 오픈소스 대체 스크립트는 커뮤니티 스크립트에서 찾을 수 있습니다.
작성자 지시 사항
Please purchase a paid membership on Patreon and submit the account linking form provided there. A 7-day free trial is available.
경고: 액세스를 요청하기 앞서 초대 전용 스크립트에 대한 가이드를 읽어주세요.
Premium Indicator: patreon.com/c/NEUROPULSE_TRADE
Discord: discord.gg/NZuBAnR3
Discord: discord.gg/NZuBAnR3
면책사항
이 정보와 게시물은 TradingView에서 제공하거나 보증하는 금융, 투자, 거래 또는 기타 유형의 조언이나 권고 사항을 의미하거나 구성하지 않습니다. 자세한 내용은 이용 약관을 참고하세요.