PINE LIBRARY
FunctionDynamicTimeWarping

Library "FunctionDynamicTimeWarping"
"In time series analysis, dynamic time warping (DTW) is an algorithm for
measuring similarity between two temporal sequences, which may vary in
speed. For instance, similarities in walking could be detected using DTW,
even if one person was walking faster than the other, or if there were
accelerations and decelerations during the course of an observation.
DTW has been applied to temporal sequences of video, audio, and graphics
data — indeed, any data that can be turned into a linear sequence can be
analyzed with DTW. A well-known application has been automatic speech
recognition, to cope with different speaking speeds. Other applications
include speaker recognition and online signature recognition.
It can also be used in partial shape matching applications."
"Dynamic time warping is used in finance and econometrics to assess the
quality of the prediction versus real-world data."
~~ wikipedia
reference:
en.wikipedia.org/wiki/Dynamic_time_warping
towardsdatascience.com/dynamic-time-warping-3933f25fcdd
github.com/shunsukeaihara/pydtw/blob/master/pydtw/dtw.pyx
cost_matrix(a, b, w)
Dynamic Time Warping procedure.
Parameters:
a: array<float>, data series.
b: array<float>, data series.
w: int , minimum window size.
Returns: matrix<float> optimum match matrix.
traceback(M)
perform a backtrace on the cost matrix and retrieve optimal paths and cost between arrays.
Parameters:
M: matrix<float>, cost matrix.
Returns: tuple:
array<int> aligned 1st array of indices.
array<int> aligned 2nd array of indices.
float final cost.
reference:
github.com/shunsukeaihara/pydtw/blob/master/pydtw/dtw.pyx
report(a, b, w)
report ordered arrays, cost and cost matrix.
Parameters:
a: array<float>, data series.
b: array<float>, data series.
w: int , minimum window size.
Returns: string report.
"In time series analysis, dynamic time warping (DTW) is an algorithm for
measuring similarity between two temporal sequences, which may vary in
speed. For instance, similarities in walking could be detected using DTW,
even if one person was walking faster than the other, or if there were
accelerations and decelerations during the course of an observation.
DTW has been applied to temporal sequences of video, audio, and graphics
data — indeed, any data that can be turned into a linear sequence can be
analyzed with DTW. A well-known application has been automatic speech
recognition, to cope with different speaking speeds. Other applications
include speaker recognition and online signature recognition.
It can also be used in partial shape matching applications."
"Dynamic time warping is used in finance and econometrics to assess the
quality of the prediction versus real-world data."
~~ wikipedia
reference:
en.wikipedia.org/wiki/Dynamic_time_warping
towardsdatascience.com/dynamic-time-warping-3933f25fcdd
github.com/shunsukeaihara/pydtw/blob/master/pydtw/dtw.pyx
cost_matrix(a, b, w)
Dynamic Time Warping procedure.
Parameters:
a: array<float>, data series.
b: array<float>, data series.
w: int , minimum window size.
Returns: matrix<float> optimum match matrix.
traceback(M)
perform a backtrace on the cost matrix and retrieve optimal paths and cost between arrays.
Parameters:
M: matrix<float>, cost matrix.
Returns: tuple:
array<int> aligned 1st array of indices.
array<int> aligned 2nd array of indices.
float final cost.
reference:
github.com/shunsukeaihara/pydtw/blob/master/pydtw/dtw.pyx
report(a, b, w)
report ordered arrays, cost and cost matrix.
Parameters:
a: array<float>, data series.
b: array<float>, data series.
w: int , minimum window size.
Returns: string report.
파인 라이브러리
트레이딩뷰의 진정한 정신에 따라, 작성자는 이 파인 코드를 오픈소스 라이브러리로 게시하여 커뮤니티의 다른 파인 프로그래머들이 재사용할 수 있도록 했습니다. 작성자에게 경의를 표합니다! 이 라이브러리는 개인적으로 사용하거나 다른 오픈소스 게시물에서 사용할 수 있지만, 이 코드의 게시물 내 재사용은 하우스 룰에 따라 규제됩니다.
면책사항
해당 정보와 게시물은 금융, 투자, 트레이딩 또는 기타 유형의 조언이나 권장 사항으로 간주되지 않으며, 트레이딩뷰에서 제공하거나 보증하는 것이 아닙니다. 자세한 내용은 이용 약관을 참조하세요.
파인 라이브러리
트레이딩뷰의 진정한 정신에 따라, 작성자는 이 파인 코드를 오픈소스 라이브러리로 게시하여 커뮤니티의 다른 파인 프로그래머들이 재사용할 수 있도록 했습니다. 작성자에게 경의를 표합니다! 이 라이브러리는 개인적으로 사용하거나 다른 오픈소스 게시물에서 사용할 수 있지만, 이 코드의 게시물 내 재사용은 하우스 룰에 따라 규제됩니다.
면책사항
해당 정보와 게시물은 금융, 투자, 트레이딩 또는 기타 유형의 조언이나 권장 사항으로 간주되지 않으며, 트레이딩뷰에서 제공하거나 보증하는 것이 아닙니다. 자세한 내용은 이용 약관을 참조하세요.