PINE LIBRARY

FunctionMinkowskiDistance

1 832
Library "FunctionMinkowskiDistance"
Method for Minkowski Distance,
The Minkowski distance or Minkowski metric is a metric in a normed vector space
which can be considered as a generalization of both the Euclidean distance and
the Manhattan distance.
It is named after the German mathematician Hermann Minkowski.
reference: en.wikipedia.org/wiki/Minkowski_distance

double(point_ax, point_ay, point_bx, point_by, p_value) Minkowsky Distance for single points.
  Parameters:
    point_ax: float, x value of point a.
    point_ay: float, y value of point a.
    point_bx: float, x value of point b.
    point_by: float, y value of point b.
    p_value: float, p value, default=1.0(1: manhatan, 2: euclidean), does not support chebychev.
  Returns: float

ndim(point_x, point_y, p_value) Minkowsky Distance for N dimensions.
  Parameters:
    point_x: float array, point x dimension attributes.
    point_y: float array, point y dimension attributes.
    p_value: float, p value, default=1.0(1: manhatan, 2: euclidean), does not support chebychev.
  Returns: float

면책사항

해당 정보와 게시물은 금융, 투자, 트레이딩 또는 기타 유형의 조언이나 권장 사항으로 간주되지 않으며, 트레이딩뷰에서 제공하거나 보증하는 것이 아닙니다. 자세한 내용은 이용 약관을 참조하세요.