PINE LIBRARY
업데이트됨 MLExtensions_Core

Library "MLExtensions_Core"
A set of extension methods for a novel implementation of a Approximate Nearest Neighbors (ANN) algorithm in Lorentzian space, focused on computation.
normalizeDeriv(src, quadraticMeanLength)
Returns the smoothed hyperbolic tangent of the input series.
Parameters:
src (float): <series float> The input series (i.e., the first-order derivative for price).
quadraticMeanLength (int): <int> The length of the quadratic mean (RMS).
Returns: nDeriv <series float> The normalized derivative of the input series.
normalize(src, min, max)
Rescales a source value with an unbounded range to a target range.
Parameters:
src (float): <series float> The input series
min (float): <float> The minimum value of the unbounded range
max (float): <float> The maximum value of the unbounded range
Returns: <series float> The normalized series
rescale(src, oldMin, oldMax, newMin, newMax)
Rescales a source value with a bounded range to anther bounded range
Parameters:
src (float): <series float> The input series
oldMin (float): <float> The minimum value of the range to rescale from
oldMax (float): <float> The maximum value of the range to rescale from
newMin (float): <float> The minimum value of the range to rescale to
newMax (float): <float> The maximum value of the range to rescale to
Returns: <series float> The rescaled series
getColorShades(color)
Creates an array of colors with varying shades of the input color
Parameters:
color (color): <color> The color to create shades of
Returns: <array color> An array of colors with varying shades of the input color
getPredictionColor(prediction, neighborsCount, shadesArr)
Determines the color shade based on prediction percentile
Parameters:
prediction (float): <float> Value of the prediction
neighborsCount (int): <int> The number of neighbors used in a nearest neighbors classification
shadesArr (array<color>): <array color> An array of colors with varying shades of the input color
Returns: shade <color> Color shade based on prediction percentile
color_green(prediction)
Assigns varying shades of the color green based on the KNN classification
Parameters:
prediction (float): Value (int|float) of the prediction
Returns: color <color>
color_red(prediction)
Assigns varying shades of the color red based on the KNN classification
Parameters:
prediction (float): Value of the prediction
Returns: color
tanh(src)
Returns the the hyperbolic tangent of the input series. The sigmoid-like hyperbolic tangent function is used to compress the input to a value between -1 and 1.
Parameters:
src (float): <series float> The input series (i.e., the normalized derivative).
Returns: tanh <series float> The hyperbolic tangent of the input series.
dualPoleFilter(src, lookback)
Returns the smoothed hyperbolic tangent of the input series.
Parameters:
src (float): <series float> The input series (i.e., the hyperbolic tangent).
lookback (int): <int> The lookback window for the smoothing.
Returns: filter <series float> The smoothed hyperbolic tangent of the input series.
tanhTransform(src, smoothingFrequency, quadraticMeanLength)
Returns the tanh transform of the input series.
Parameters:
src (float): <series float> The input series (i.e., the result of the tanh calculation).
smoothingFrequency (int)
quadraticMeanLength (int)
Returns: signal <series float> The smoothed hyperbolic tangent transform of the input series.
n_rsi(src, n1, n2)
Returns the normalized RSI ideal for use in ML algorithms.
Parameters:
src (float): <series float> The input series (i.e., the result of the RSI calculation).
n1 (simple int): <int> The length of the RSI.
n2 (simple int): <int> The smoothing length of the RSI.
Returns: signal <series float> The normalized RSI.
n_cci(src, n1, n2)
Returns the normalized CCI ideal for use in ML algorithms.
Parameters:
src (float): <series float> The input series (i.e., the result of the CCI calculation).
n1 (simple int): <int> The length of the CCI.
n2 (simple int): <int> The smoothing length of the CCI.
Returns: signal <series float> The normalized CCI.
n_wt(src, n1, n2)
Returns the normalized WaveTrend Classic series ideal for use in ML algorithms.
Parameters:
src (float): <series float> The input series (i.e., the result of the WaveTrend Classic calculation).
n1 (simple int)
n2 (simple int)
Returns: signal <series float> The normalized WaveTrend Classic series.
n_adx(highSrc, lowSrc, closeSrc, n1)
Returns the normalized ADX ideal for use in ML algorithms.
Parameters:
highSrc (float): <series float> The input series for the high price.
lowSrc (float): <series float> The input series for the low price.
closeSrc (float): <series float> The input series for the close price.
n1 (simple int): <int> The length of the ADX.
regime_filter(src, threshold, useRegimeFilter)
Parameters:
src (float)
threshold (float)
useRegimeFilter (bool)
filter_adx(src, length, adxThreshold, useAdxFilter)
filter_adx
Parameters:
src (float): <series float> The source series.
length (simple int): <int> The length of the ADX.
adxThreshold (int): <int> The ADX threshold.
useAdxFilter (bool): <bool> Whether to use the ADX filter.
Returns: <series float> The ADX.
filter_volatility(minLength, maxLength, sensitivityMultiplier, useVolatilityFilter)
filter_volatility
Parameters:
minLength (simple int): <int> The minimum length of the ATR.
maxLength (simple int): <int> The maximum length of the ATR.
sensitivityMultiplier (float): <float> Multiplier for the historical ATR to control sensitivity.
useVolatilityFilter (bool): <bool> Whether to use the volatility filter.
Returns: <bool> Boolean indicating whether or not to let the signal pass through the filter.
A set of extension methods for a novel implementation of a Approximate Nearest Neighbors (ANN) algorithm in Lorentzian space, focused on computation.
normalizeDeriv(src, quadraticMeanLength)
Returns the smoothed hyperbolic tangent of the input series.
Parameters:
src (float): <series float> The input series (i.e., the first-order derivative for price).
quadraticMeanLength (int): <int> The length of the quadratic mean (RMS).
Returns: nDeriv <series float> The normalized derivative of the input series.
normalize(src, min, max)
Rescales a source value with an unbounded range to a target range.
Parameters:
src (float): <series float> The input series
min (float): <float> The minimum value of the unbounded range
max (float): <float> The maximum value of the unbounded range
Returns: <series float> The normalized series
rescale(src, oldMin, oldMax, newMin, newMax)
Rescales a source value with a bounded range to anther bounded range
Parameters:
src (float): <series float> The input series
oldMin (float): <float> The minimum value of the range to rescale from
oldMax (float): <float> The maximum value of the range to rescale from
newMin (float): <float> The minimum value of the range to rescale to
newMax (float): <float> The maximum value of the range to rescale to
Returns: <series float> The rescaled series
getColorShades(color)
Creates an array of colors with varying shades of the input color
Parameters:
color (color): <color> The color to create shades of
Returns: <array color> An array of colors with varying shades of the input color
getPredictionColor(prediction, neighborsCount, shadesArr)
Determines the color shade based on prediction percentile
Parameters:
prediction (float): <float> Value of the prediction
neighborsCount (int): <int> The number of neighbors used in a nearest neighbors classification
shadesArr (array<color>): <array color> An array of colors with varying shades of the input color
Returns: shade <color> Color shade based on prediction percentile
color_green(prediction)
Assigns varying shades of the color green based on the KNN classification
Parameters:
prediction (float): Value (int|float) of the prediction
Returns: color <color>
color_red(prediction)
Assigns varying shades of the color red based on the KNN classification
Parameters:
prediction (float): Value of the prediction
Returns: color
tanh(src)
Returns the the hyperbolic tangent of the input series. The sigmoid-like hyperbolic tangent function is used to compress the input to a value between -1 and 1.
Parameters:
src (float): <series float> The input series (i.e., the normalized derivative).
Returns: tanh <series float> The hyperbolic tangent of the input series.
dualPoleFilter(src, lookback)
Returns the smoothed hyperbolic tangent of the input series.
Parameters:
src (float): <series float> The input series (i.e., the hyperbolic tangent).
lookback (int): <int> The lookback window for the smoothing.
Returns: filter <series float> The smoothed hyperbolic tangent of the input series.
tanhTransform(src, smoothingFrequency, quadraticMeanLength)
Returns the tanh transform of the input series.
Parameters:
src (float): <series float> The input series (i.e., the result of the tanh calculation).
smoothingFrequency (int)
quadraticMeanLength (int)
Returns: signal <series float> The smoothed hyperbolic tangent transform of the input series.
n_rsi(src, n1, n2)
Returns the normalized RSI ideal for use in ML algorithms.
Parameters:
src (float): <series float> The input series (i.e., the result of the RSI calculation).
n1 (simple int): <int> The length of the RSI.
n2 (simple int): <int> The smoothing length of the RSI.
Returns: signal <series float> The normalized RSI.
n_cci(src, n1, n2)
Returns the normalized CCI ideal for use in ML algorithms.
Parameters:
src (float): <series float> The input series (i.e., the result of the CCI calculation).
n1 (simple int): <int> The length of the CCI.
n2 (simple int): <int> The smoothing length of the CCI.
Returns: signal <series float> The normalized CCI.
n_wt(src, n1, n2)
Returns the normalized WaveTrend Classic series ideal for use in ML algorithms.
Parameters:
src (float): <series float> The input series (i.e., the result of the WaveTrend Classic calculation).
n1 (simple int)
n2 (simple int)
Returns: signal <series float> The normalized WaveTrend Classic series.
n_adx(highSrc, lowSrc, closeSrc, n1)
Returns the normalized ADX ideal for use in ML algorithms.
Parameters:
highSrc (float): <series float> The input series for the high price.
lowSrc (float): <series float> The input series for the low price.
closeSrc (float): <series float> The input series for the close price.
n1 (simple int): <int> The length of the ADX.
regime_filter(src, threshold, useRegimeFilter)
Parameters:
src (float)
threshold (float)
useRegimeFilter (bool)
filter_adx(src, length, adxThreshold, useAdxFilter)
filter_adx
Parameters:
src (float): <series float> The source series.
length (simple int): <int> The length of the ADX.
adxThreshold (int): <int> The ADX threshold.
useAdxFilter (bool): <bool> Whether to use the ADX filter.
Returns: <series float> The ADX.
filter_volatility(minLength, maxLength, sensitivityMultiplier, useVolatilityFilter)
filter_volatility
Parameters:
minLength (simple int): <int> The minimum length of the ATR.
maxLength (simple int): <int> The maximum length of the ATR.
sensitivityMultiplier (float): <float> Multiplier for the historical ATR to control sensitivity.
useVolatilityFilter (bool): <bool> Whether to use the volatility filter.
Returns: <bool> Boolean indicating whether or not to let the signal pass through the filter.
릴리즈 노트
v2Added:
norm(src)
Normalizes a value if mean is 0
This function does not access global variables.
Parameters:
src (float): <series float> The input series to normalize.
Returns: <series float> The normalized series.
파인 라이브러리
트레이딩뷰의 진정한 정신에 따라, 작성자는 이 파인 코드를 오픈소스 라이브러리로 게시하여 커뮤니티의 다른 파인 프로그래머들이 재사용할 수 있도록 했습니다. 작성자에게 경의를 표합니다! 이 라이브러리는 개인적으로 사용하거나 다른 오픈소스 게시물에서 사용할 수 있지만, 이 코드의 게시물 내 재사용은 하우스 룰에 따라 규제됩니다.
면책사항
해당 정보와 게시물은 금융, 투자, 트레이딩 또는 기타 유형의 조언이나 권장 사항으로 간주되지 않으며, 트레이딩뷰에서 제공하거나 보증하는 것이 아닙니다. 자세한 내용은 이용 약관을 참조하세요.
파인 라이브러리
트레이딩뷰의 진정한 정신에 따라, 작성자는 이 파인 코드를 오픈소스 라이브러리로 게시하여 커뮤니티의 다른 파인 프로그래머들이 재사용할 수 있도록 했습니다. 작성자에게 경의를 표합니다! 이 라이브러리는 개인적으로 사용하거나 다른 오픈소스 게시물에서 사용할 수 있지만, 이 코드의 게시물 내 재사용은 하우스 룰에 따라 규제됩니다.
면책사항
해당 정보와 게시물은 금융, 투자, 트레이딩 또는 기타 유형의 조언이나 권장 사항으로 간주되지 않으며, 트레이딩뷰에서 제공하거나 보증하는 것이 아닙니다. 자세한 내용은 이용 약관을 참조하세요.