PINE LIBRARY
업데이트됨 MathLibrary

Library "MathLibrary"
Algebra & 2D geometry utilities absent from Pine built-ins.
Rigorous, no-repaint, export-ready: vectors, robust roots, linear solvers, 2x2/3x3 det/inverse,
symmetric 2x2 eigensystem, orthogonal regression (TLS), affine transforms, intersections,
distances, projections, polygon metrics, point-in-polygon, convex hull (monotone chain),
Bezier/Catmull-Rom/Barycentric tools.
clamp(x, lo, hi)
clamp to [lo, hi]
Parameters:
x (float)
lo (float)
hi (float)
near(a, b, atol, rtol)
approximately equal with relative+absolute tolerance
Parameters:
a (float)
b (float)
atol (float)
rtol (float)
sgn(x)
sign as {-1,0,1}
Parameters:
x (float)
hypot(x, y)
stable hypot (sqrt(x^2+y^2))
Parameters:
x (float)
y (float)
method length(v)
Namespace types: Vec2
Parameters:
v (Vec2)
method length2(v)
Namespace types: Vec2
Parameters:
v (Vec2)
method normalized(v)
Namespace types: Vec2
Parameters:
v (Vec2)
method add(a, b)
Namespace types: Vec2
Parameters:
a (Vec2)
b (Vec2)
method sub(a, b)
Namespace types: Vec2
Parameters:
a (Vec2)
b (Vec2)
method muls(v, s)
Namespace types: Vec2
Parameters:
v (Vec2)
s (float)
method dot(a, b)
Namespace types: Vec2
Parameters:
a (Vec2)
b (Vec2)
method crossz(a, b)
Namespace types: Vec2
Parameters:
a (Vec2)
b (Vec2)
method rotate(v, ang)
Namespace types: Vec2
Parameters:
v (Vec2)
ang (float)
method apply(v, T)
Namespace types: Vec2
Parameters:
v (Vec2)
T (Affine2)
affine_identity()
identity transform
affine_translate(tx, ty)
translation
Parameters:
tx (float)
ty (float)
affine_rotate(ang)
rotation about origin
Parameters:
ang (float)
affine_scale(sx, sy)
scaling about origin
Parameters:
sx (float)
sy (float)
affine_rotate_about(ang, px, py)
rotation about pivot (px,py)
Parameters:
ang (float)
px (float)
py (float)
affine_compose(T2, T1)
compose T2∘T1 (apply T1 then T2)
Parameters:
T2 (Affine2)
T1 (Affine2)
quadratic_roots(a, b, c)
Real roots of ax^2 + bx + c = 0 (numerically stable)
Parameters:
a (float)
b (float)
c (float)
Returns: [int n, float r1, float r2] with n∈{0,1,2}; r1<=r2 when n=2.
cubic_roots(a, b, c, d)
Real roots of ax^3+bx^2+cx+d=0 (Cardano; returns up to 3 real roots)
Parameters:
a (float)
b (float)
c (float)
d (float)
Returns: [int n, float r1, float r2, float r3] (valid r2/r3 only if n>=2/n>=3)
det2(a, b, c, d)
det2 of [a b; c d]
Parameters:
a (float)
b (float)
c (float)
d (float)
inv2(a, b, c, d)
inverse of 2x2; returns [ok, ia, ib, ic, id]
Parameters:
a (float)
b (float)
c (float)
d (float)
solve2(a, b, c, d, e, f)
solve 2x2 * [x;y] = [e;f] via Cramer
Parameters:
a (float)
b (float)
c (float)
d (float)
e (float)
f (float)
det3(a11, a12, a13, a21, a22, a23, a31, a32, a33)
det3 of 3x3
Parameters:
a11 (float)
a12 (float)
a13 (float)
a21 (float)
a22 (float)
a23 (float)
a31 (float)
a32 (float)
a33 (float)
inv3(a11, a12, a13, a21, a22, a23, a31, a32, a33)
inverse 3x3; returns [ok, i11..i33]
Parameters:
a11 (float)
a12 (float)
a13 (float)
a21 (float)
a22 (float)
a23 (float)
a31 (float)
a32 (float)
a33 (float)
eig2_symmetric(a, b, d)
symmetric 2x2 eigensystem: [[a,b],[b,d]]
Parameters:
a (float)
b (float)
d (float)
Returns: [lambda_max, v1x, v1y, lambda_min, v2x, v2y] with unit eigenvectors
tls_line(xs, ys)
Orthogonal (total least squares) regression line through point cloud
Input arrays must be same length N>=2. Returns line in normal form n•x + c = 0
Parameters:
xs (array<float>)
ys (array<float>)
Returns: [ok, nx, ny, c, cx, cy] where (nx,ny) unit normal; (cx,cy) centroid.
orient(a, b, c)
orientation (signed area*2): >0 CCW, <0 CW, 0 collinear
Parameters:
a (Vec2)
b (Vec2)
c (Vec2)
project_point_line(p, a, d)
project point p onto infinite line through a with direction d
Parameters:
p (Vec2)
a (Vec2)
d (Vec2)
Returns: [projVec2, t] where proj = a + t*d
closest_point_segment(p, a, b)
closest point on segment [a,b] to p
Parameters:
p (Vec2)
a (Vec2)
b (Vec2)
Returns: [closestVec2, t] where t∈[0,1] on segment
dist_point_line(p, a, d)
distance from point to line (infinite)
Parameters:
p (Vec2)
a (Vec2)
d (Vec2)
dist_point_segment(p, a, b)
distance from point to segment [a,b]
Parameters:
p (Vec2)
a (Vec2)
b (Vec2)
intersect_lines(p1, d1, p2, d2)
line-line intersection: L1: p1+d1*t, L2: p2+d2*u
Parameters:
p1 (Vec2)
d1 (Vec2)
p2 (Vec2)
d2 (Vec2)
Returns: [ok, ix, iy, t, u]
intersect_segments(s1, s2)
segment-segment intersection (closed segments)
Parameters:
s1 (Segment2)
s2 (Segment2)
Returns: [kind, ix, iy] where kind: 0=no, 1=proper point, 2=overlap (ix/iy=na)
circumcircle(a, b, c)
circle through 3 non-collinear points
Parameters:
a (Vec2)
b (Vec2)
c (Vec2)
intersect_circle_line(C, p, d)
intersections of circle and line (param p + d t)
Parameters:
C (Circle2)
p (Vec2)
d (Vec2)
Returns: [n, x1,y1, x2,y2] with n∈{0,1,2}
intersect_circles(A, B)
circle-circle intersection
Parameters:
A (Circle2)
B (Circle2)
Returns: [n, x1,y1, x2,y2] with n∈{0,1,2}
polygon_area(xs, ys)
signed area (shoelace). Positive if CCW.
Parameters:
xs (array<float>)
ys (array<float>)
polygon_centroid(xs, ys)
polygon centroid (for non-self-intersecting). Fallback to vertex mean if area≈0.
Parameters:
xs (array<float>)
ys (array<float>)
Vec2
Fields:
x (series float)
y (series float)
Line2
Fields:
p (Vec2)
d (Vec2)
Segment2
Fields:
a (Vec2)
b (Vec2)
Circle2
Fields:
c (Vec2)
r (series float)
Affine2
Fields:
a (series float)
b (series float)
c (series float)
d (series float)
tx (series float)
ty (series float)
Algebra & 2D geometry utilities absent from Pine built-ins.
Rigorous, no-repaint, export-ready: vectors, robust roots, linear solvers, 2x2/3x3 det/inverse,
symmetric 2x2 eigensystem, orthogonal regression (TLS), affine transforms, intersections,
distances, projections, polygon metrics, point-in-polygon, convex hull (monotone chain),
Bezier/Catmull-Rom/Barycentric tools.
clamp(x, lo, hi)
clamp to [lo, hi]
Parameters:
x (float)
lo (float)
hi (float)
near(a, b, atol, rtol)
approximately equal with relative+absolute tolerance
Parameters:
a (float)
b (float)
atol (float)
rtol (float)
sgn(x)
sign as {-1,0,1}
Parameters:
x (float)
hypot(x, y)
stable hypot (sqrt(x^2+y^2))
Parameters:
x (float)
y (float)
method length(v)
Namespace types: Vec2
Parameters:
v (Vec2)
method length2(v)
Namespace types: Vec2
Parameters:
v (Vec2)
method normalized(v)
Namespace types: Vec2
Parameters:
v (Vec2)
method add(a, b)
Namespace types: Vec2
Parameters:
a (Vec2)
b (Vec2)
method sub(a, b)
Namespace types: Vec2
Parameters:
a (Vec2)
b (Vec2)
method muls(v, s)
Namespace types: Vec2
Parameters:
v (Vec2)
s (float)
method dot(a, b)
Namespace types: Vec2
Parameters:
a (Vec2)
b (Vec2)
method crossz(a, b)
Namespace types: Vec2
Parameters:
a (Vec2)
b (Vec2)
method rotate(v, ang)
Namespace types: Vec2
Parameters:
v (Vec2)
ang (float)
method apply(v, T)
Namespace types: Vec2
Parameters:
v (Vec2)
T (Affine2)
affine_identity()
identity transform
affine_translate(tx, ty)
translation
Parameters:
tx (float)
ty (float)
affine_rotate(ang)
rotation about origin
Parameters:
ang (float)
affine_scale(sx, sy)
scaling about origin
Parameters:
sx (float)
sy (float)
affine_rotate_about(ang, px, py)
rotation about pivot (px,py)
Parameters:
ang (float)
px (float)
py (float)
affine_compose(T2, T1)
compose T2∘T1 (apply T1 then T2)
Parameters:
T2 (Affine2)
T1 (Affine2)
quadratic_roots(a, b, c)
Real roots of ax^2 + bx + c = 0 (numerically stable)
Parameters:
a (float)
b (float)
c (float)
Returns: [int n, float r1, float r2] with n∈{0,1,2}; r1<=r2 when n=2.
cubic_roots(a, b, c, d)
Real roots of ax^3+bx^2+cx+d=0 (Cardano; returns up to 3 real roots)
Parameters:
a (float)
b (float)
c (float)
d (float)
Returns: [int n, float r1, float r2, float r3] (valid r2/r3 only if n>=2/n>=3)
det2(a, b, c, d)
det2 of [a b; c d]
Parameters:
a (float)
b (float)
c (float)
d (float)
inv2(a, b, c, d)
inverse of 2x2; returns [ok, ia, ib, ic, id]
Parameters:
a (float)
b (float)
c (float)
d (float)
solve2(a, b, c, d, e, f)
solve 2x2 * [x;y] = [e;f] via Cramer
Parameters:
a (float)
b (float)
c (float)
d (float)
e (float)
f (float)
det3(a11, a12, a13, a21, a22, a23, a31, a32, a33)
det3 of 3x3
Parameters:
a11 (float)
a12 (float)
a13 (float)
a21 (float)
a22 (float)
a23 (float)
a31 (float)
a32 (float)
a33 (float)
inv3(a11, a12, a13, a21, a22, a23, a31, a32, a33)
inverse 3x3; returns [ok, i11..i33]
Parameters:
a11 (float)
a12 (float)
a13 (float)
a21 (float)
a22 (float)
a23 (float)
a31 (float)
a32 (float)
a33 (float)
eig2_symmetric(a, b, d)
symmetric 2x2 eigensystem: [[a,b],[b,d]]
Parameters:
a (float)
b (float)
d (float)
Returns: [lambda_max, v1x, v1y, lambda_min, v2x, v2y] with unit eigenvectors
tls_line(xs, ys)
Orthogonal (total least squares) regression line through point cloud
Input arrays must be same length N>=2. Returns line in normal form n•x + c = 0
Parameters:
xs (array<float>)
ys (array<float>)
Returns: [ok, nx, ny, c, cx, cy] where (nx,ny) unit normal; (cx,cy) centroid.
orient(a, b, c)
orientation (signed area*2): >0 CCW, <0 CW, 0 collinear
Parameters:
a (Vec2)
b (Vec2)
c (Vec2)
project_point_line(p, a, d)
project point p onto infinite line through a with direction d
Parameters:
p (Vec2)
a (Vec2)
d (Vec2)
Returns: [projVec2, t] where proj = a + t*d
closest_point_segment(p, a, b)
closest point on segment [a,b] to p
Parameters:
p (Vec2)
a (Vec2)
b (Vec2)
Returns: [closestVec2, t] where t∈[0,1] on segment
dist_point_line(p, a, d)
distance from point to line (infinite)
Parameters:
p (Vec2)
a (Vec2)
d (Vec2)
dist_point_segment(p, a, b)
distance from point to segment [a,b]
Parameters:
p (Vec2)
a (Vec2)
b (Vec2)
intersect_lines(p1, d1, p2, d2)
line-line intersection: L1: p1+d1*t, L2: p2+d2*u
Parameters:
p1 (Vec2)
d1 (Vec2)
p2 (Vec2)
d2 (Vec2)
Returns: [ok, ix, iy, t, u]
intersect_segments(s1, s2)
segment-segment intersection (closed segments)
Parameters:
s1 (Segment2)
s2 (Segment2)
Returns: [kind, ix, iy] where kind: 0=no, 1=proper point, 2=overlap (ix/iy=na)
circumcircle(a, b, c)
circle through 3 non-collinear points
Parameters:
a (Vec2)
b (Vec2)
c (Vec2)
intersect_circle_line(C, p, d)
intersections of circle and line (param p + d t)
Parameters:
C (Circle2)
p (Vec2)
d (Vec2)
Returns: [n, x1,y1, x2,y2] with n∈{0,1,2}
intersect_circles(A, B)
circle-circle intersection
Parameters:
A (Circle2)
B (Circle2)
Returns: [n, x1,y1, x2,y2] with n∈{0,1,2}
polygon_area(xs, ys)
signed area (shoelace). Positive if CCW.
Parameters:
xs (array<float>)
ys (array<float>)
polygon_centroid(xs, ys)
polygon centroid (for non-self-intersecting). Fallback to vertex mean if area≈0.
Parameters:
xs (array<float>)
ys (array<float>)
Vec2
Fields:
x (series float)
y (series float)
Line2
Fields:
p (Vec2)
d (Vec2)
Segment2
Fields:
a (Vec2)
b (Vec2)
Circle2
Fields:
c (Vec2)
r (series float)
Affine2
Fields:
a (series float)
b (series float)
c (series float)
d (series float)
tx (series float)
ty (series float)
릴리즈 노트
v2Added:
norm_pdf(x)
Standard normal PDF φ(x)
Parameters:
x (float)
erf(x)
Error function erf(x) (Abramowitz-Stegun 7.1.26-like polynomial)
Parameters:
x (float)
norm_cdf(x)
Standard normal CDF Φ(x) via erf
Parameters:
x (float)
erfc(x)
Complementary error function
Parameters:
x (float)
norm_ppf(p)
Inverse standard normal CDF (Acklam-style rational approx)
Parameters:
p (float)
quantile(src, len, q)
Rolling quantile (0..1). Linear interpolation between order stats.
Parameters:
src (float)
len (simple int)
q (simple float)
median(src, len)
Rolling median via quantile(0.5)
Parameters:
src (float)
len (simple int)
percent_rank(x, len)
Rolling percentile rank in [0,1]
Parameters:
x (float)
len (simple int)
mad(src, len)
Rolling MAD (median absolute deviation)
Parameters:
src (float)
len (simple int)
iqr(src, len)
Rolling interquartile range (Q3 - Q1)
Parameters:
src (float)
len (simple int)
poly_eval(coeffs, x)
Horner polynomial evaluation given coeffs c[0..N-1] at x
Parameters:
coeffs (array<float>)
x (float)
파인 라이브러리
진정한 트레이딩뷰 정신에 따라 작성자는 이 파인 코드를 오픈 소스 라이브러리로 공개하여 커뮤니티의 다른 파인 프로그래머들이 재사용할 수 있도록 했습니다. 작성자에게 건배! 이 라이브러리는 개인적으로 또는 다른 오픈 소스 출판물에서 사용할 수 있지만, 출판물에서 이 코드를 재사용하는 것은 하우스 룰의 적용을 받습니다.
면책사항
이 정보와 게시물은 TradingView에서 제공하거나 보증하는 금융, 투자, 거래 또는 기타 유형의 조언이나 권고 사항을 의미하거나 구성하지 않습니다. 자세한 내용은 이용 약관을 참고하세요.
파인 라이브러리
진정한 트레이딩뷰 정신에 따라 작성자는 이 파인 코드를 오픈 소스 라이브러리로 공개하여 커뮤니티의 다른 파인 프로그래머들이 재사용할 수 있도록 했습니다. 작성자에게 건배! 이 라이브러리는 개인적으로 또는 다른 오픈 소스 출판물에서 사용할 수 있지만, 출판물에서 이 코드를 재사용하는 것은 하우스 룰의 적용을 받습니다.
면책사항
이 정보와 게시물은 TradingView에서 제공하거나 보증하는 금융, 투자, 거래 또는 기타 유형의 조언이나 권고 사항을 의미하거나 구성하지 않습니다. 자세한 내용은 이용 약관을 참고하세요.