OPEN-SOURCE SCRIPT
チャットGPT

import yfinance as yf
import pandas as pd
import requests
from bs4 import BeautifulSoup
# 株たんのスクリーニング結果URL(例:200日線以下)
url = "kabutan.jp/warning/?mode=3_1"
r = requests.get(url)
soup = BeautifulSoup(r.text, "html.parser")
# 銘柄コードと企業名を抽出
stocks = []
for link in soup.select("td a[href*='/stock/?code=']"):
code = link['href'].split('=')[-1]
name = link.text.strip()
if code.isdigit():
stocks.append({"code": code, "name": name})
results = []
for stock in stocks[:10]: # ←テスト用に10銘柄まで
ticker = f"{stock['code']}.T"
df = yf.download(ticker, period="1y", interval="1d")
# EMA200
df["EMA200"] = df["Close"].ewm(span=200, adjust=False).mean()
below_ema200 = df["Close"].iloc[-1] < df["EMA200"].iloc[-1]
# 株たんの個別ページからPER・成長率を取得
stock_url = f"kabutan.jp/stock/?code={stock['code']}"
res = requests.get(stock_url)
s = BeautifulSoup(res.text, "html.parser")
try:
per = s.find(text="PER").find_next("td").text
growth = s.find(text="売上高増減率").find_next("td").text
except:
per, growth = "N/A", "N/A"
results.append({
"銘柄コード": stock['code'],
"企業名": stock['name'],
"200EMA以下": below_ema200,
"PER": per,
"売上成長率": growth
})
# 結果をCSV出力
df_result = pd.DataFrame(results)
df_result.to_csv("割安EMA200以下銘柄.csv", index=False, encoding="utf-8-sig")
print(df_result)
import pandas as pd
import requests
from bs4 import BeautifulSoup
# 株たんのスクリーニング結果URL(例:200日線以下)
url = "kabutan.jp/warning/?mode=3_1"
r = requests.get(url)
soup = BeautifulSoup(r.text, "html.parser")
# 銘柄コードと企業名を抽出
stocks = []
for link in soup.select("td a[href*='/stock/?code=']"):
code = link['href'].split('=')[-1]
name = link.text.strip()
if code.isdigit():
stocks.append({"code": code, "name": name})
results = []
for stock in stocks[:10]: # ←テスト用に10銘柄まで
ticker = f"{stock['code']}.T"
df = yf.download(ticker, period="1y", interval="1d")
# EMA200
df["EMA200"] = df["Close"].ewm(span=200, adjust=False).mean()
below_ema200 = df["Close"].iloc[-1] < df["EMA200"].iloc[-1]
# 株たんの個別ページからPER・成長率を取得
stock_url = f"kabutan.jp/stock/?code={stock['code']}"
res = requests.get(stock_url)
s = BeautifulSoup(res.text, "html.parser")
try:
per = s.find(text="PER").find_next("td").text
growth = s.find(text="売上高増減率").find_next("td").text
except:
per, growth = "N/A", "N/A"
results.append({
"銘柄コード": stock['code'],
"企業名": stock['name'],
"200EMA以下": below_ema200,
"PER": per,
"売上成長率": growth
})
# 結果をCSV出力
df_result = pd.DataFrame(results)
df_result.to_csv("割安EMA200以下銘柄.csv", index=False, encoding="utf-8-sig")
print(df_result)
오픈 소스 스크립트
트레이딩뷰의 진정한 정신에 따라, 이 스크립트의 작성자는 이를 오픈소스로 공개하여 트레이더들이 기능을 검토하고 검증할 수 있도록 했습니다. 작성자에게 찬사를 보냅니다! 이 코드는 무료로 사용할 수 있지만, 코드를 재게시하는 경우 하우스 룰이 적용된다는 점을 기억하세요.
면책사항
해당 정보와 게시물은 금융, 투자, 트레이딩 또는 기타 유형의 조언이나 권장 사항으로 간주되지 않으며, 트레이딩뷰에서 제공하거나 보증하는 것이 아닙니다. 자세한 내용은 이용 약관을 참조하세요.
오픈 소스 스크립트
트레이딩뷰의 진정한 정신에 따라, 이 스크립트의 작성자는 이를 오픈소스로 공개하여 트레이더들이 기능을 검토하고 검증할 수 있도록 했습니다. 작성자에게 찬사를 보냅니다! 이 코드는 무료로 사용할 수 있지만, 코드를 재게시하는 경우 하우스 룰이 적용된다는 점을 기억하세요.
면책사항
해당 정보와 게시물은 금융, 투자, 트레이딩 또는 기타 유형의 조언이나 권장 사항으로 간주되지 않으며, 트레이딩뷰에서 제공하거나 보증하는 것이 아닙니다. 자세한 내용은 이용 약관을 참조하세요.