PINE LIBRARY

ApproximateGaussianSmoothing

업데이트됨
Library "ApproximateGaussianSmoothing"
This library provides a novel smoothing function for time-series data, serving as an alternative to SMA and EMA. Additionally, it provides some statistical processing, using moving averages as expected values in statistics.
'Approximate Gaussian Smoothing' (AGS) is designed to apply weights to time-series data that closely resemble Gaussian smoothing weights. it is easier to calculate than the similar ALMA.
In case AGS is used as a moving average, I named it 'Approximate Gaussian Weighted Moving Average' (AGWMA).

The formula is:
AGWMA = (EMA + EMA(EMA) + EMA(EMA(EMA)) + EMA(EMA(EMA(EMA)))) / 4
The EMA parameter alpha is 5 / (N + 4), using time period N (or length).


ma(src, length)
  Calculate moving average using AGS (AGWMA).
  Parameters:
    src (float): Series of values to process.
    length (simple int): Number of bars (length).
  Returns: Moving average.

analyse(src, length)
  Calculate mean and variance using AGS.
  Parameters:
    src (float): Series of values to process.
    length (simple int): Number of bars (length).
  Returns: Mean and variance.

analyse(dimensions, sources, length)
  Calculate mean and variance covariance matrix using AGS.
  Parameters:
    dimensions (simple int): Dimensions of sources to process.
    sources (array<float>): Series of values to process.
    length (simple int): Number of bars (length).
  Returns: Mean and variance covariance matrix.

trend(src, length)
  Calculate intercept (LSMA) and slope using AGS.
  Parameters:
    src (float): Series of values to process.
    length (simple int): Number of bars (length).
  Returns: Intercept and slope.
릴리즈 노트
v2

更新:
trend(src, length)
  Calculate trend statistics using AGS.
  Parameters:
    src (float): Series of values to process.
    length (simple int): Number of bars (length).
  Returns: Slope, intercept, correlation and RSS.
릴리즈 노트
v3
statistics

파인 라이브러리

진정한 TradingView 정신에 따라, 저자는 이 파인 코드를 다른 파인 프로그래머들이 재사용할 수 있도록 오픈 소스 라이브러리로 공개했습니다. 저자에게 박수를 보냅니다! 이 라이브러리는 개인적으로 사용하거나 다른 오픈 소스 출판물에서 사용할 수 있지만, 이 코드를 출판물에서 재사용하는 것은 하우스 룰에 의해 관리됩니다.

면책사항