PROTECTED SOURCE SCRIPT
GARCH 1.1

GARCH stands for heteroscedastic conditional generalized autoregressive model.
The GARCH model is a generalized autoregressive model that captures volatility clusters of returns through conditional variance.
In other words, the GARCH model finds the average volatility in the medium term through an autoregression that depends on the sum of the lagged shocks and the sum of the lagged variances.
The GARCH model and its extensions are used for their ability to predict volatility in the short to medium term.
This script was developed to predict the volatility of stock options in real time and indicate a reference volatility through the application of a percentage reducer, which can be changed by the user depending on his operating model.
- Generalized because it takes into account recent and historical observations.
- Autoregressive because the dependent variable returns on itself.
- Conditional because future variation depends on historical variation.
- Heteroscedastic because the variance varies as a function of the observations.
The GARCH model is a generalized autoregressive model that captures volatility clusters of returns through conditional variance.
In other words, the GARCH model finds the average volatility in the medium term through an autoregression that depends on the sum of the lagged shocks and the sum of the lagged variances.
The GARCH model and its extensions are used for their ability to predict volatility in the short to medium term.
This script was developed to predict the volatility of stock options in real time and indicate a reference volatility through the application of a percentage reducer, which can be changed by the user depending on his operating model.
보호된 스크립트입니다
이 스크립트는 비공개 소스로 게시됩니다. 하지만 제한 없이 자유롭게 사용할 수 있습니다 — 여기에서 자세히 알아보기.
면책사항
이 정보와 게시물은 TradingView에서 제공하거나 보증하는 금융, 투자, 거래 또는 기타 유형의 조언이나 권고 사항을 의미하거나 구성하지 않습니다. 자세한 내용은 이용 약관을 참고하세요.
보호된 스크립트입니다
이 스크립트는 비공개 소스로 게시됩니다. 하지만 제한 없이 자유롭게 사용할 수 있습니다 — 여기에서 자세히 알아보기.
면책사항
이 정보와 게시물은 TradingView에서 제공하거나 보증하는 금융, 투자, 거래 또는 기타 유형의 조언이나 권고 사항을 의미하거나 구성하지 않습니다. 자세한 내용은 이용 약관을 참고하세요.