Library "BenfordsLaw" Methods to deal with Benford's law which states that a distribution of first and higher order digits of numerical strings has a characteristic pattern. "Benford's law is an observation about the leading digits of the numbers found in real-world data sets. Intuitively, one might expect that the leading digits of these numbers would be uniformly distributed so that each of the digits from 1 to 9 is equally likely to appear. In fact, it is often the case that 1 occurs more frequently than 2, 2 more frequently than 3, and so on. This observation is a simplified version of Benford's law. More precisely, the law gives a prediction of the frequency of leading digits using base-10 logarithms that predicts specific frequencies which decrease as the digits increase from 1 to 9." ~(2) --- reference: - 1: en.wikipedia.org/wiki/Benford's_law - 2: brilliant.org/wiki/benfords-law/ - 4: github.com/vineettanna/Benfords-Law/tree/master
cumsum_difference(a, b) Calculate the cumulative sum difference of two arrays of same size. Parameters: a (float[]): `array<float>` List of values. b (float[]): `array<float>` List of values. Returns: List with CumSum Difference between arrays.
fractional_int(number) Transform a floating number including its fractional part to integer form ex:. `1.2345 -> 12345`. Parameters: number (float): `float` The number to transform. Returns: Transformed number.
split_to_digits(number, reverse) Transforms a integer number into a list of its digits. Parameters: number (int): `int` Number to transform. reverse (bool): `bool` `default=true`, Reverse the order of the digits, if true, last will be first. Returns: Transformed number digits list.
digit_in(number, digit) Digit at index. Parameters: number (int): `int` Number to parse. digit (int): `int` `default=0`, Index of digit. Returns: Digit found at the index.
digits_from(data, dindex) Process a list of `int` values and get the list of digits. Parameters: data (int[]): `array<int>` List of numbers. dindex (int): `int` `default=0`, Index of digit. Returns: List of digits at the index.
digit_counters(digits) Score digits. Parameters: digits (int[]): `array<int>` List of digits. Returns: List of counters per digit (1-9).
digit_distribution(counters) Calculates the frequency distribution based on counters provided. Parameters: counters (int[]): `array<int>` List of counters, must have size(9). Returns: Distribution of the frequency of the digits.
digit_p(digit) Expected probability for digit according to Benford. Parameters: digit (int): `int` Digit number reference in range `1 -> 9`. Returns: Probability of digit according to Benford's law.
benfords_distribution() Calculated Expected distribution per digit according to Benford's Law. Returns: List with the expected distribution.
benfords_distribution_aprox() Aproximate Expected distribution per digit according to Benford's Law. Returns: List with the expected distribution.
test_benfords(digits, calculate_benfords) Tests Benford's Law on provided list of digits. Parameters: digits (int[]): `array<int>` List of digits. calculate_benfords (bool) Returns: Tuple with: - Counters: Score of each digit. - Sample distribution: Frequency for each digit. - Expected distribution: Expected frequency according to Benford's. - Cumulative Sum of difference:
진정한 TradingView 정신에 따라, 저자는 이 파인 코드를 다른 파인 프로그래머들이 재사용할 수 있도록 오픈 소스 라이브러리로 공개했습니다. 저자에게 박수를 보냅니다! 이 라이브러리는 개인적으로 사용하거나 다른 오픈 소스 출판물에서 사용할 수 있지만, 이 코드를 출판물에서 재사용하는 것은 하우스 룰에 의해 관리됩니다.