PINE LIBRARY
업데이트됨 MLActivationFunctions

Library "MLActivationFunctions"
Activation functions for Neural networks.
binary_step(value) Basic threshold output classifier to activate/deactivate neuron.
Parameters:
value: float, value to process.
Returns: float
linear(value) Input is the same as output.
Parameters:
value: float, value to process.
Returns: float
sigmoid(value) Sigmoid or logistic function.
Parameters:
value: float, value to process.
Returns: float
sigmoid_derivative(value) Derivative of sigmoid function.
Parameters:
value: float, value to process.
Returns: float
tanh(value) Hyperbolic tangent function.
Parameters:
value: float, value to process.
Returns: float
tanh_derivative(value) Hyperbolic tangent function derivative.
Parameters:
value: float, value to process.
Returns: float
relu(value) Rectified linear unit (RELU) function.
Parameters:
value: float, value to process.
Returns: float
relu_derivative(value) RELU function derivative.
Parameters:
value: float, value to process.
Returns: float
leaky_relu(value) Leaky RELU function.
Parameters:
value: float, value to process.
Returns: float
leaky_relu_derivative(value) Leaky RELU function derivative.
Parameters:
value: float, value to process.
Returns: float
relu6(value) RELU-6 function.
Parameters:
value: float, value to process.
Returns: float
softmax(value) Softmax function.
Parameters:
value: float array, values to process.
Returns: float
softplus(value) Softplus function.
Parameters:
value: float, value to process.
Returns: float
softsign(value) Softsign function.
Parameters:
value: float, value to process.
Returns: float
elu(value, alpha) Exponential Linear Unit (ELU) function.
Parameters:
value: float, value to process.
alpha: float, default=1.0, predefined constant, controls the value to which an ELU saturates for negative net inputs. .
Returns: float
selu(value, alpha, scale) Scaled Exponential Linear Unit (SELU) function.
Parameters:
value: float, value to process.
alpha: float, default=1.67326324, predefined constant, controls the value to which an SELU saturates for negative net inputs. .
scale: float, default=1.05070098, predefined constant.
Returns: float
exponential(value) Pointer to math.exp() function.
Parameters:
value: float, value to process.
Returns: float
function(name, value, alpha, scale) Activation function.
Parameters:
name: string, name of activation function.
value: float, value to process.
alpha: float, default=na, if required.
scale: float, default=na, if required.
Returns: float
derivative(name, value, alpha, scale) Derivative Activation function.
Parameters:
name: string, name of activation function.
value: float, value to process.
alpha: float, default=na, if required.
scale: float, default=na, if required.
Returns: float
Activation functions for Neural networks.
binary_step(value) Basic threshold output classifier to activate/deactivate neuron.
Parameters:
value: float, value to process.
Returns: float
linear(value) Input is the same as output.
Parameters:
value: float, value to process.
Returns: float
sigmoid(value) Sigmoid or logistic function.
Parameters:
value: float, value to process.
Returns: float
sigmoid_derivative(value) Derivative of sigmoid function.
Parameters:
value: float, value to process.
Returns: float
tanh(value) Hyperbolic tangent function.
Parameters:
value: float, value to process.
Returns: float
tanh_derivative(value) Hyperbolic tangent function derivative.
Parameters:
value: float, value to process.
Returns: float
relu(value) Rectified linear unit (RELU) function.
Parameters:
value: float, value to process.
Returns: float
relu_derivative(value) RELU function derivative.
Parameters:
value: float, value to process.
Returns: float
leaky_relu(value) Leaky RELU function.
Parameters:
value: float, value to process.
Returns: float
leaky_relu_derivative(value) Leaky RELU function derivative.
Parameters:
value: float, value to process.
Returns: float
relu6(value) RELU-6 function.
Parameters:
value: float, value to process.
Returns: float
softmax(value) Softmax function.
Parameters:
value: float array, values to process.
Returns: float
softplus(value) Softplus function.
Parameters:
value: float, value to process.
Returns: float
softsign(value) Softsign function.
Parameters:
value: float, value to process.
Returns: float
elu(value, alpha) Exponential Linear Unit (ELU) function.
Parameters:
value: float, value to process.
alpha: float, default=1.0, predefined constant, controls the value to which an ELU saturates for negative net inputs. .
Returns: float
selu(value, alpha, scale) Scaled Exponential Linear Unit (SELU) function.
Parameters:
value: float, value to process.
alpha: float, default=1.67326324, predefined constant, controls the value to which an SELU saturates for negative net inputs. .
scale: float, default=1.05070098, predefined constant.
Returns: float
exponential(value) Pointer to math.exp() function.
Parameters:
value: float, value to process.
Returns: float
function(name, value, alpha, scale) Activation function.
Parameters:
name: string, name of activation function.
value: float, value to process.
alpha: float, default=na, if required.
scale: float, default=na, if required.
Returns: float
derivative(name, value, alpha, scale) Derivative Activation function.
Parameters:
name: string, name of activation function.
value: float, value to process.
alpha: float, default=na, if required.
scale: float, default=na, if required.
Returns: float
릴리즈 노트
v2Added:
softmax_derivative(value) Softmax derivative function.
Parameters:
value: float array, values to process.
Returns: float
파인 라이브러리
진정한 트레이딩뷰 정신에 따라 작성자는 이 파인 코드를 오픈 소스 라이브러리로 공개하여 커뮤니티의 다른 파인 프로그래머들이 재사용할 수 있도록 했습니다. 작성자에게 건배! 이 라이브러리는 개인적으로 또는 다른 오픈 소스 출판물에서 사용할 수 있지만, 출판물에서 이 코드를 재사용하는 것은 하우스 룰의 적용을 받습니다.
면책사항
이 정보와 게시물은 TradingView에서 제공하거나 보증하는 금융, 투자, 거래 또는 기타 유형의 조언이나 권고 사항을 의미하거나 구성하지 않습니다. 자세한 내용은 이용 약관을 참고하세요.
파인 라이브러리
진정한 트레이딩뷰 정신에 따라 작성자는 이 파인 코드를 오픈 소스 라이브러리로 공개하여 커뮤니티의 다른 파인 프로그래머들이 재사용할 수 있도록 했습니다. 작성자에게 건배! 이 라이브러리는 개인적으로 또는 다른 오픈 소스 출판물에서 사용할 수 있지만, 출판물에서 이 코드를 재사용하는 것은 하우스 룰의 적용을 받습니다.
면책사항
이 정보와 게시물은 TradingView에서 제공하거나 보증하는 금융, 투자, 거래 또는 기타 유형의 조언이나 권고 사항을 의미하거나 구성하지 않습니다. 자세한 내용은 이용 약관을 참고하세요.