PROTECTED SOURCE SCRIPT
Triple Z (Geometrical Mean) [ChartPrime]

Triple Z (Geometrical Mean)
Overview
The "Triple Z (Geometrical Mean) [ChartPrime]" indicator calculates three Z-scores of closing prices with different lengths, computes their geometric mean, and visualizes it on the chart with gradient colors and labeled values. Signals are generated when the geometric mean crosses above or below zero.
Geometric Mean:
The geometric mean is the central tendency of a set of numbers, calculated by multiplying them together and then taking the nth root (where n is the count of numbers). It is especially useful for sets of numbers that are products or exponential in nature, providing a more accurate measure of central tendency than the arithmetic mean for growth rates and ratios.
Pine Script®
Key Features:
⯁ Z-Scores Calculation:
⯁ Geometric Mean:
⯁ Visualization:
⯁ Signals:
⯁ Usage Break Down:

Use this indicator to analyze market trends via Z-scores and their geometric mean. Crossings of the geometric mean can signal potential trend up or trend down. Color gradients provide visual cues on market direction and strength.
Overview
The "Triple Z (Geometrical Mean) [ChartPrime]" indicator calculates three Z-scores of closing prices with different lengths, computes their geometric mean, and visualizes it on the chart with gradient colors and labeled values. Signals are generated when the geometric mean crosses above or below zero.
Geometric Mean:
The geometric mean is the central tendency of a set of numbers, calculated by multiplying them together and then taking the nth root (where n is the count of numbers). It is especially useful for sets of numbers that are products or exponential in nature, providing a more accurate measure of central tendency than the arithmetic mean for growth rates and ratios.
// Geometrical Mean
if barstate.isconfirmed
geometric_mean := math.pow(( 1 + math.avg(z_1, z_1[1], z_1[2]) / 100)
* (1 + math.avg(z_2, z_2[1], z_2[2]) / 100)
* (1 + math.avg(z_3, z_3[1], z_3[2]) / 100)
, 3.0)-1
Key Features:
⯁ Z-Scores Calculation:
⯁ Geometric Mean:
- - Calculated from the latest Z-scores and plotted on the chart.
- - Matrix displays the latest Z-scores and geometric mean below.
⯁ Visualization:
- - Lines with gradient colors represent Z-scores.
- - Hull Moving Average plotted with gradient color based on the geometric mean.
- - Labels show current values.
- - Historical Values of Geometrical Mean.
⯁ Signals:
⯁ Usage Break Down:
- - Z score Oscillator above zero > up trend, below zero > down trend
- - Slow Z score For longer terms trends, the fastest Z score for fast changes in a market
- - Geometrical Mean and matrix is calculated of these three Z scores Oscillators. Geometrical Mean uses Z scores from Matrix, each column contain Z scores of each oscillator (Current at the top, next previous and last before previous Z value).
- - The Higher Geometrical Mean the stronger Trend up (above zero), the lower G Mean the stronger Trend Down (below zero)
- - Aggregation of these key points creates Ultimate Trend Following Indicator with strength of trends
Use this indicator to analyze market trends via Z-scores and their geometric mean. Crossings of the geometric mean can signal potential trend up or trend down. Color gradients provide visual cues on market direction and strength.
보호된 스크립트입니다
이 스크립트는 비공개 소스로 게시됩니다. 하지만 제한 없이 자유롭게 사용할 수 있습니다 — 여기에서 자세히 알아보기.
면책사항
이 정보와 게시물은 TradingView에서 제공하거나 보증하는 금융, 투자, 거래 또는 기타 유형의 조언이나 권고 사항을 의미하거나 구성하지 않습니다. 자세한 내용은 이용 약관을 참고하세요.
보호된 스크립트입니다
이 스크립트는 비공개 소스로 게시됩니다. 하지만 제한 없이 자유롭게 사용할 수 있습니다 — 여기에서 자세히 알아보기.
면책사항
이 정보와 게시물은 TradingView에서 제공하거나 보증하는 금융, 투자, 거래 또는 기타 유형의 조언이나 권고 사항을 의미하거나 구성하지 않습니다. 자세한 내용은 이용 약관을 참고하세요.