OPEN-SOURCE SCRIPT
OmniPulse (Fixed Version)

OmniPulse (Fixed Version) – Description
OmniPulse is a multi-indicator framework designed to combine three core oscillators—RSI, Stochastic, and Momentum—at various lookback lengths, then refine their signals using placeholder features such as machine learning forecasting, adaptive cycle detection, and neural network filtering. While some of these advanced features are not natively supported in Pine Script, they are represented here in simplified forms to illustrate how a more sophisticated system could be structured.
Key Components:
Multi-Length Oscillator Arrays
RSI (calcrsi() function)
Stochastic (placeholder via ta.sma() on a typical price average)
Momentum (ta.roc())
These are calculated for multiple lengths defined by the rsiLengths, stochLengths, and momentumLengths arrays.
Dual-Threshold Convergence
Compares each oscillator’s value to user-defined upper/lower thresholds (threshold1, threshold2) to identify bullish or bearish conditions.
Summarizes results in a convergence score.
Placeholder Machine Learning Forecast
Demonstrates a simple averaging of oscillator values as a “forecast” when toggled on.
Adaptive Cycle Detection (Placeholder)
Introduces a static cycle period (e.g., 20.0) as a placeholder for more advanced transforms.
Neural Network Filter (Placeholder)
Averages convergence, forecast, and cyclePeriod into a single filteredSignal.
Signal Plotting
Plots the filtered signal on the chart.
Highlights potential bullish or bearish extremes with shape markers based on percentile thresholds.
Practical Use & Extension:
Real Multi-Timeframe Analysis: Replace placeholders with request.security() for each timeframe.
Advanced Forecasting: Incorporate custom or external machine learning models.
Genuine Cycle Detection: Implement more sophisticated logic or user-defined cycle detection tools.
Neural Network Heuristics: Expand the placeholder step into a deeper filtering or weighting system.
Overall, OmniPulse serves as an adaptable blueprint for traders and developers, showcasing how multiple indicators and advanced concepts might be combined into a cohesive, signal-generating framework.
OmniPulse is a multi-indicator framework designed to combine three core oscillators—RSI, Stochastic, and Momentum—at various lookback lengths, then refine their signals using placeholder features such as machine learning forecasting, adaptive cycle detection, and neural network filtering. While some of these advanced features are not natively supported in Pine Script, they are represented here in simplified forms to illustrate how a more sophisticated system could be structured.
Key Components:
Multi-Length Oscillator Arrays
RSI (calcrsi() function)
Stochastic (placeholder via ta.sma() on a typical price average)
Momentum (ta.roc())
These are calculated for multiple lengths defined by the rsiLengths, stochLengths, and momentumLengths arrays.
Dual-Threshold Convergence
Compares each oscillator’s value to user-defined upper/lower thresholds (threshold1, threshold2) to identify bullish or bearish conditions.
Summarizes results in a convergence score.
Placeholder Machine Learning Forecast
Demonstrates a simple averaging of oscillator values as a “forecast” when toggled on.
Adaptive Cycle Detection (Placeholder)
Introduces a static cycle period (e.g., 20.0) as a placeholder for more advanced transforms.
Neural Network Filter (Placeholder)
Averages convergence, forecast, and cyclePeriod into a single filteredSignal.
Signal Plotting
Plots the filtered signal on the chart.
Highlights potential bullish or bearish extremes with shape markers based on percentile thresholds.
Practical Use & Extension:
Real Multi-Timeframe Analysis: Replace placeholders with request.security() for each timeframe.
Advanced Forecasting: Incorporate custom or external machine learning models.
Genuine Cycle Detection: Implement more sophisticated logic or user-defined cycle detection tools.
Neural Network Heuristics: Expand the placeholder step into a deeper filtering or weighting system.
Overall, OmniPulse serves as an adaptable blueprint for traders and developers, showcasing how multiple indicators and advanced concepts might be combined into a cohesive, signal-generating framework.
오픈 소스 스크립트
트레이딩뷰의 진정한 정신에 따라, 이 스크립트의 작성자는 이를 오픈소스로 공개하여 트레이더들이 기능을 검토하고 검증할 수 있도록 했습니다. 작성자에게 찬사를 보냅니다! 이 코드는 무료로 사용할 수 있지만, 코드를 재게시하는 경우 하우스 룰이 적용된다는 점을 기억하세요.
면책사항
해당 정보와 게시물은 금융, 투자, 트레이딩 또는 기타 유형의 조언이나 권장 사항으로 간주되지 않으며, 트레이딩뷰에서 제공하거나 보증하는 것이 아닙니다. 자세한 내용은 이용 약관을 참조하세요.
오픈 소스 스크립트
트레이딩뷰의 진정한 정신에 따라, 이 스크립트의 작성자는 이를 오픈소스로 공개하여 트레이더들이 기능을 검토하고 검증할 수 있도록 했습니다. 작성자에게 찬사를 보냅니다! 이 코드는 무료로 사용할 수 있지만, 코드를 재게시하는 경우 하우스 룰이 적용된다는 점을 기억하세요.
면책사항
해당 정보와 게시물은 금융, 투자, 트레이딩 또는 기타 유형의 조언이나 권장 사항으로 간주되지 않으며, 트레이딩뷰에서 제공하거나 보증하는 것이 아닙니다. 자세한 내용은 이용 약관을 참조하세요.