PINE LIBRARY
업데이트됨 MathTransform

Library "MathTransform"
Auxiliary functions for transforming data using mathematical and statistical methods
scaler_zscore(x, lookback_window)
Calculates Z-Score normalization of a series.
Parameters:
x (float): : floating point series to normalize
lookback_window (int): : lookback period for calculating mean and standard deviation
Returns: Z-Score normalized series
scaler_min_max(x, lookback_window, min_val, max_val, empiric_min, empiric_max, empiric_mid)
Performs Min-Max scaling of a series within a given window, user-defined bounds, and optional midpoint
Parameters:
x (float): : floating point series to transform
lookback_window (int): : int : optional lookback window size to consider for scaling.
min_val (float): : float : minimum value of the scaled range. Default is 0.0.
max_val (float): : float : maximum value of the scaled range. Default is 1.0.
empiric_min (float): : float : user-defined minimum value of the input data. This means that the output could exceed the `min_val` bound if there is data in `x` lesser than `empiric_min`. If na, it's calculated from `x` and `lookback_window`.
empiric_max (float): : float : user-defined maximum value of the input data. This means that the output could exceed the `max_val` bound if there is data in `x` greater than `empiric_max`. If na, it's calculated from `x` and `lookback_window`.
empiric_mid (float): : float : user-defined midpoint value of the input data. If na, it's calculated from `empiric_min` and `empiric_max`.
Returns: rescaled series
log(x, base)
Applies logarithmic transformation to a value, base can be user-defined.
Parameters:
x (float): : floating point value to transform
base (float): : logarithmic base, must be greater than 0
Returns: logarithm of the value to the given base, if x <= 0, returns logarithm of 1 to the given base
exp(x, base)
Applies exponential transformation to a value, base can be user-defined.
Parameters:
x (float): : floating point value to transform
base (float): : base of the exponentiation, must be greater than 0
Returns: the result of raising the base to the power of the value
power(x, exponent)
Applies power transformation to a value, exponent can be user-defined.
Parameters:
x (float): : floating point value to transform
exponent (float): : exponent for the transformation
Returns: the value raised to the given exponent, preserving the sign of the original value
tanh(x, scale)
The hyperbolic tangent is the ratio of the hyperbolic sine and hyperbolic cosine. It limits an output to a range of −1 to 1.
Parameters:
x (float): : floating point series
scale (float)
sigmoid(x, scale, offset)
Applies the sigmoid function to a series.
Parameters:
x (float): : floating point series to transform
scale (float): : scaling factor for the sigmoid function
offset (float): : offset for the sigmoid function
Returns: transformed series using the sigmoid function
sigmoid_double(x, scale, offset)
Applies a double sigmoid function to a series, handling positive and negative values differently.
Parameters:
x (float): : floating point series to transform
scale (float): : scaling factor for the sigmoid function
offset (float): : offset for the sigmoid function
Returns: transformed series using the double sigmoid function
logistic_decay(a, b, c, t)
Calculates logistic decay based on given parameters.
Parameters:
a (float): : parameter affecting the steepness of the curve
b (float): : parameter affecting the direction of the decay
c (float): : the upper bound of the function's output
t (float): : time variable
Returns: value of the logistic decay function at time t
Auxiliary functions for transforming data using mathematical and statistical methods
scaler_zscore(x, lookback_window)
Calculates Z-Score normalization of a series.
Parameters:
x (float): : floating point series to normalize
lookback_window (int): : lookback period for calculating mean and standard deviation
Returns: Z-Score normalized series
scaler_min_max(x, lookback_window, min_val, max_val, empiric_min, empiric_max, empiric_mid)
Performs Min-Max scaling of a series within a given window, user-defined bounds, and optional midpoint
Parameters:
x (float): : floating point series to transform
lookback_window (int): : int : optional lookback window size to consider for scaling.
min_val (float): : float : minimum value of the scaled range. Default is 0.0.
max_val (float): : float : maximum value of the scaled range. Default is 1.0.
empiric_min (float): : float : user-defined minimum value of the input data. This means that the output could exceed the `min_val` bound if there is data in `x` lesser than `empiric_min`. If na, it's calculated from `x` and `lookback_window`.
empiric_max (float): : float : user-defined maximum value of the input data. This means that the output could exceed the `max_val` bound if there is data in `x` greater than `empiric_max`. If na, it's calculated from `x` and `lookback_window`.
empiric_mid (float): : float : user-defined midpoint value of the input data. If na, it's calculated from `empiric_min` and `empiric_max`.
Returns: rescaled series
log(x, base)
Applies logarithmic transformation to a value, base can be user-defined.
Parameters:
x (float): : floating point value to transform
base (float): : logarithmic base, must be greater than 0
Returns: logarithm of the value to the given base, if x <= 0, returns logarithm of 1 to the given base
exp(x, base)
Applies exponential transformation to a value, base can be user-defined.
Parameters:
x (float): : floating point value to transform
base (float): : base of the exponentiation, must be greater than 0
Returns: the result of raising the base to the power of the value
power(x, exponent)
Applies power transformation to a value, exponent can be user-defined.
Parameters:
x (float): : floating point value to transform
exponent (float): : exponent for the transformation
Returns: the value raised to the given exponent, preserving the sign of the original value
tanh(x, scale)
The hyperbolic tangent is the ratio of the hyperbolic sine and hyperbolic cosine. It limits an output to a range of −1 to 1.
Parameters:
x (float): : floating point series
scale (float)
sigmoid(x, scale, offset)
Applies the sigmoid function to a series.
Parameters:
x (float): : floating point series to transform
scale (float): : scaling factor for the sigmoid function
offset (float): : offset for the sigmoid function
Returns: transformed series using the sigmoid function
sigmoid_double(x, scale, offset)
Applies a double sigmoid function to a series, handling positive and negative values differently.
Parameters:
x (float): : floating point series to transform
scale (float): : scaling factor for the sigmoid function
offset (float): : offset for the sigmoid function
Returns: transformed series using the double sigmoid function
logistic_decay(a, b, c, t)
Calculates logistic decay based on given parameters.
Parameters:
a (float): : parameter affecting the steepness of the curve
b (float): : parameter affecting the direction of the decay
c (float): : the upper bound of the function's output
t (float): : time variable
Returns: value of the logistic decay function at time t
릴리즈 노트
v2Added:
scaler_robust(x, lookback_window)
Performs robust scaling of a series within a given window
sinh(x, scale)
The hyperbolic sine (sinh) is defined as the half-difference of the exponential function of its argument.
cosh(x, scale)
The hyperbolic cosine (cosh) is defined as the half-sum of the exponential function of its argument.
Updated:
tanh(x, scale)
The Inversie Fisher Transform, or hyperbolic tangent (tanh), is the ratio of the hyperbolic sine and hyperbolic cosine.
릴리즈 노트
v3Updated:
- most docstrings for better readability
Added:
- `root_mean_square()` transformation
- `box_cox()` transformation - EXPERIMENTAL
릴리즈 노트
Added:- Logarithmic Interpolation Scaler
- Root Mean Square (RMS)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)
- Root Mean Squared Logarithmic Error (RMSLE)
- Huber Loss
- Quantile Loss (Pinball Loss)
파인 라이브러리
진정한 트레이딩뷰 정신에 따라 작성자는 이 파인 코드를 오픈 소스 라이브러리로 공개하여 커뮤니티의 다른 파인 프로그래머들이 재사용할 수 있도록 했습니다. 작성자에게 건배! 이 라이브러리는 개인적으로 또는 다른 오픈 소스 출판물에서 사용할 수 있지만, 출판물에서 이 코드를 재사용하는 것은 하우스 룰의 적용을 받습니다.
🌸 ---- GoemonYae Trading System (GYTS) ---- 🌸
🌐 Website (launching soon): goemonyae.com
💬 Discord server (including YaeBot): discord.gg/ef6Tu4kha3
👔 personal LinkedIn: linkedin.com/in/arthur-nazarian
🌐 Website (launching soon): goemonyae.com
💬 Discord server (including YaeBot): discord.gg/ef6Tu4kha3
👔 personal LinkedIn: linkedin.com/in/arthur-nazarian
면책사항
이 정보와 게시물은 TradingView에서 제공하거나 보증하는 금융, 투자, 거래 또는 기타 유형의 조언이나 권고 사항을 의미하거나 구성하지 않습니다. 자세한 내용은 이용 약관을 참고하세요.
파인 라이브러리
진정한 트레이딩뷰 정신에 따라 작성자는 이 파인 코드를 오픈 소스 라이브러리로 공개하여 커뮤니티의 다른 파인 프로그래머들이 재사용할 수 있도록 했습니다. 작성자에게 건배! 이 라이브러리는 개인적으로 또는 다른 오픈 소스 출판물에서 사용할 수 있지만, 출판물에서 이 코드를 재사용하는 것은 하우스 룰의 적용을 받습니다.
🌸 ---- GoemonYae Trading System (GYTS) ---- 🌸
🌐 Website (launching soon): goemonyae.com
💬 Discord server (including YaeBot): discord.gg/ef6Tu4kha3
👔 personal LinkedIn: linkedin.com/in/arthur-nazarian
🌐 Website (launching soon): goemonyae.com
💬 Discord server (including YaeBot): discord.gg/ef6Tu4kha3
👔 personal LinkedIn: linkedin.com/in/arthur-nazarian
면책사항
이 정보와 게시물은 TradingView에서 제공하거나 보증하는 금융, 투자, 거래 또는 기타 유형의 조언이나 권고 사항을 의미하거나 구성하지 않습니다. 자세한 내용은 이용 약관을 참고하세요.