Here's a allocated set of decimals based on 20,000 prandom portfolio constructs based on 14 years of data (since recovery after 2008-09 GFC)
This timeline gives us less noise and focuses on the momentum of the current trend.
The final ticker decimals represent % allocation based on optimal reward with minimal risk.
This timeline gives us less noise and focuses on the momentum of the current trend.
The final ticker decimals represent % allocation based on optimal reward with minimal risk.
노트
What Is a Good Sharpe Ratio?Sharpe ratios above 1 are generally considered “good," offering excess returns relative to volatility. However, investors often compare the Sharpe ratio of a portfolio or fund with those of its peers or market sector. So a portfolio with a Sharpe ratio of 1 might be found lacking if most rivals have ratios above 1.2, for example. A good Sharpe ratio in one context might be just a so-so one, or worse, in another.
노트
For developers:import numpy as np
import pandas as pd
# import pandas_datareader.data as web
import matplotlib.pyplot as plt
import datetime
# from scipy.sparse.linalg import lsqr
import scipy.optimize as optimization
import yfinance as yf
from datetime import datetime
...
main:
data = download_data(stocks)
show_data(data)
returns = parse_returns(data)
plot_daily_returns(returns)
show_statistics(returns)
weights = stack_weights(stocks)
calculate_portfolio_return(returns,weights)
calculate_portfolio_variance(returns,weights)
preturns,pvariances = port_generate(weights,returns,stocks)
plot_portfolios(preturns,pvariances)
statistics(weights,returns)
#statistics(weights,preturns)
sharpe_max = sharpe_pass(weights,returns)
optimum = optimizations(weights,returns,stocks)
parse_portfolios(optimum, returns,stocks)
show_optimal_portfolio(optimum,returns,preturns,pvariances)
면책사항
해당 정보와 게시물은 금융, 투자, 트레이딩 또는 기타 유형의 조언이나 권장 사항으로 간주되지 않으며, 트레이딩뷰에서 제공하거나 보증하는 것이 아닙니다. 자세한 내용은 이용 약관을 참조하세요.
면책사항
해당 정보와 게시물은 금융, 투자, 트레이딩 또는 기타 유형의 조언이나 권장 사항으로 간주되지 않으며, 트레이딩뷰에서 제공하거나 보증하는 것이 아닙니다. 자세한 내용은 이용 약관을 참조하세요.
