loxx

Polynomial Regression Derivatives [Loxx]

Polynomial Regression Derivatives is an indicator that explores the different derivatives of polynomial position. This indicator also includes a signal line. In a later release, alerts with signal markings will be added.

Polynomial Derivatives are as follows

  • 1rst Derivative - Velocity: Velocity is the directional speed of a object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. 60 km/h northbound). Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies.

  • 2nd Derivative - Acceleration: In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the orientation of the net force acting on that object.

  • 3rd Derivative - Jerk: In physics, jerk or jolt is the rate at which an object's acceleration changes with respect to time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s3 (SI units) or standard gravities per second (g0/s).

  • 4th Derivative - Snap: Snap, or jounce, is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. Equivalently, it is the second derivative of acceleration or the third derivative of velocity.

  • 5th Derivative - Crackle: The fifth derivative of the position vector with respect to time is sometimes referred to as crackle. It is the rate of change of snap with respect to time.

  • 6nd Derivative - Pop: The sixth derivative of the position vector with respect to time is sometimes referred to as pop. It is the rate of change of crackle with respect to time.

Included:
  • Loxx's Expanded Source Types
  • Loxx's Moving Averages

오픈 소스 스크립트

이 스크립트의 오써는 참된 트레이딩뷰의 스피릿으로 이 스크립트를 오픈소스로 퍼블리쉬하여 트레이더들로 하여금 이해 및 검증할 수 있도록 하였습니다. 오써를 응원합니다! 스크립트를 무료로 쓸 수 있지만, 다른 퍼블리케이션에서 이 코드를 재사용하는 것은 하우스룰을 따릅니다. 님은 즐겨찾기로 이 스크립트를 차트에서 쓸 수 있습니다.

면책사항

이 정보와 게시물은 TradingView에서 제공하거나 보증하는 금융, 투자, 거래 또는 기타 유형의 조언이나 권고 사항을 의미하거나 구성하지 않습니다. 자세한 내용은 이용 약관을 참고하세요.

차트에 이 스크립트를 사용하시겠습니까?