RicardoSantos

Probability

Library "Probability"

erf(value) Complementary error function
Parameters:
  • value: float, value to test.
Returns: float

ierf_mcgiles(value) Computes the inverse error function using the Mc Giles method, sacrifices accuracy for speed.
Parameters:
  • value: float, -1.0 >= _value >= 1.0 range, value to test.
Returns: float

ierf_double(value) computes the inverse error function using the Newton method with double refinement.
Parameters:
  • value: float, -1. > _value > 1. range, _value to test.
Returns: float

ierf(value) computes the inverse error function using the Newton method.
Parameters:
  • value: float, -1. > _value > 1. range, _value to test.
Returns: float

complement(probability) probability that the event will not occur.
Parameters:
  • probability: float, 0 >=_p >= 1, probability of event.
Returns: float

entropy_gini_impurity_single(probability) Gini Inbalance or Gini index for a given probability.
Parameters:
  • probability: float, 0>=x>=1, probability of event.
Returns: float

entropy_gini_impurity(events) Gini Inbalance or Gini index for a series of events.
Parameters:
  • events: float, 0>=x>=1, array with event probability's.
Returns: float

entropy_shannon_single(probability) Entropy information value of the probability of a single event.
Parameters:
  • probability: float, 0>=x>=1, probability value.
Returns: float, value as bits of information.

entropy_shannon(events) Entropy information value of a distribution of events.
Parameters:
  • events: float, 0>=x>=1, array with probability's.
Returns: float

inequality_chebyshev(n_stdeviations) Calculates Chebyshev Inequality.
Parameters:
  • n_stdeviations: float, positive over or equal to 1.0
Returns: float

inequality_chebyshev_distribution(mean, std) Calculates Chebyshev Inequality.
Parameters:
  • mean: float, mean of a distribution
  • std: float, standard deviation of a distribution
Returns: float

inequality_chebyshev_sample(data_sample) Calculates Chebyshev Inequality for a array of values.
Parameters:
  • data_sample: float, array of numbers.
Returns: float

intersection_of_independent_events(events) Probability that all arguments will happen when neither outcome
is affected by the other (accepts 1 or more arguments)
Parameters:
  • events: float, 0 >= _p >= 1, list of event probabilities.
Returns: float

union_of_independent_events(events) Probability that either one of the arguments will happen when neither outcome
is affected by the other (accepts 1 or more arguments)
Parameters:
  • events: float, 0 >= _p >= 1, list of event probabilities.
Returns: float

mass_function(sample, n_bins) Probabilities for each bin in the range of sample.
Parameters:
  • sample: float, samples to pool probabilities.
  • n_bins: int, number of bins to split the range
    @return float


cumulative_distribution_function(mean, stdev, value) Use the CDF to determine the probability that a random observation
that is taken from the population will be less than or equal to a certain value.
Or returns the area of probability for a known value in a normal distribution.
Parameters:
  • mean: float, samples to pool probabilities.
  • stdev: float, number of bins to split the range
  • value: float, limit at which to stop.
Returns: float

transition_matrix(distribution) Transition matrix for the suplied distribution.
Parameters:
  • distribution: float, array with probability distribution. ex:.
Returns: float

diffusion_matrix(transition_matrix, dimension, target_step) Probability of reaching target_state at target_step after starting from start_state
Parameters:
  • transition_matrix: float, "pseudo2d" probability transition matrix.
  • dimension: int, size of the matrix dimension.
  • target_step: number of steps to find probability.
Returns: float

state_at_time(transition_matrix, dimension, start_state, target_state, target_step) Probability of reaching target_state at target_step after starting from start_state
Parameters:
  • transition_matrix: float, "pseudo2d" probability transition matrix.
  • dimension: int, size of the matrix dimension.
  • start_state: state at which to start.
  • target_state: state to find probability.
  • target_step: number of steps to find probability.

파인 라이브러리

트레이딩뷰 정신에 따라 오써는 이 파인 코드를 오픈 소스 라이브러리로 퍼블리쉬하여 당사 커뮤니티의 다른 파인 프로그래머들이 쓸 수 있도록 하였습니다. 오써에게 찬사를! 여러분은 이 라이브러리를 프라이빗 또는 오픈 소스 퍼블리케이션에 쓸 수 있지만 퍼블리케이션에 재사용은 하우스룰을 따릅니다.

면책사항

이 정보와 게시물은 TradingView에서 제공하거나 보증하는 금융, 투자, 거래 또는 기타 유형의 조언이나 권고 사항을 의미하거나 구성하지 않습니다. 자세한 내용은 이용 약관을 참고하세요.

이 라이브러리를 쓰시겠습니까?

텍스트를 클립보드에 카피한 뒤 님의 스크립트에 붙여 넣기.